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Based on the simulation results, steady-state tracking errors are improved. Control of 

indeterminate systems, despite the actuator and sensor bias, has been and remains a major 

challenge. Sensor error can cause process error. Among the cases where sensor bias is 

common, air velocity measurements and gyroscope rates can be mentioned. Although 

considerable research efforts have previously focused on adapting the error, the bias 

correction of the sensor appears to be relatively limited. However, the cause of several 

crashes was the sensor error (due to radio altimeter error, angle of attack sensor error, 

airspeed speed sensor error). Also, finding a way to fix the sensor bias problem is of the 

utmost importance. The direct model reference adaptive control (MRAC) method is used to 
control uncertain systems using controllers that are adapted to achieve a performance close 

to a reference model. However, these controllers maintain system stability and provide close 

tracking of the reference model response. In this paper, we intend to address the problem of 

unknown sensor bias matching by adjusting the direct reference model adaptive control for 

state-feedback for state-tracking (SFST). Also, to obtain an asymptotic stable bias sensor 

estimator, we use the Kalman filter to estimate the bias sensor error. Based on the simulation 

results, steady-state tracking errors are improved. 
 

1. Introduction 

Sensor bias matching schemes are usually investigated by 

the SFST-MRAC method and the problem of bias matching 

of unknown sensors in controlling uncertain systems is 
considered. Such errors may cause serious damage to the 

stability and performance of the closed loop. Therefore, the 

MRAC control law is modified to estimate sensor bias with 

gain matching and to form asymptotic tracking and signal 

limiting [1]. Also, the discussion [2–7] of the adaptive 

control discussion, despite the driving error and sensor error 

in the process, is aimed at the simultaneous matching of the 

sensor and bias sensor errors with the help of MRAC control 

law. Therefore, the reference model adaptive control method 

is proposed, which is a promising method for maintaining 

stability and controllability in the event of driver error 

(without the need for error detection, identification and 
reconfiguration). Although the results presented are for cases 
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with a single reference input, they can be extended to 

systems with multiple stimuli and multiple reference inputs. 

In [8] the FTFC scheme is proposed which includes both the 

outer ring controller and the inner ring. By first introducing 
a leader-follower control mechanism by integrating a 

collision avoidance mechanism as an outer ring control 

(designed to guarantee the UAV to prevent collisions with 

impediments), then an FTC strategy, as a controller The 

inner ring is designed to counteract stimulus errors as well as 

to prevent saturation of healthy stimuli. Although they are 

practically applicable and especially attractive in terms of 

elegance and simplicity, there are drawbacks to the method 

of avoiding collision. Therefore, the research path can be 

directed towards updating the mechanism of avoidance of 

dealing with smart and adaptive capabilities. Bias 

estimations for multi-sensor systems are discussed in [9–11], 
which are important in some practical areas, such as target 

tracking, integrated navigation, transmission network, fault 
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tolerance, and so on. In fact, studies on the state matching 

problem for a type of dynamic system with multiple 

asynchronous sensors, where observations from different 

sensors are accidentally missing. Here, optimum state 

matching is achieved by using the multipurpose system 

theory and the modified Kalman filter. In addition, the 

problem of point-setting tracking is discussed by sensor bias 

and actuator offset in [12-15]. For example, we consider a 
process that may be the trigger input of an unmodulated 

offset, while sensor measurements may also be corrupted by 

an unmodulated bias. (Which is probably due to incomplete 

calibration.) So the question arises whether it is possible to 

achieve a constant zero-state error in the presence of both 

unknown states (stimulus offset and unknown sensor bias)? 

In SISO systems, while there are both offset and bias sensor 

offsets, a servo-loop architecture with forward and reverse 

controllers cannot be used to track the position of the set 

point. Although the results in these papers are limited to 

SISO transfer functions, generalizations about MIMO based 

on state space models are also being investigated. (For the 
case of both operator and sensor disturbances, both of which 

are measured, set point tracking using feed control is 

provided. MRAC schemes by output feedback for output 

tracking in sensor error display, in [16-19]. And [20], have 

been expanded, and in fact the sensor uncertainty 

compensation problem has been addressed for the adaptive 

control of the multi-system reference model, two output 

feedback-based MRAC schemes for dynamically recognized 

MIMO systems. Sensor uncertainty as an indefinite function 

is a parameter adjustable and a compensator designed to be 

able to adapt Therefore, for unknown dynamical systems, a 
new feedback control structure is created so that (by 

matching) it will be able to detect uncertainties in both types 

of measurements. Effectively offsets (system and sensor) the 

simulation results show that the proposed MRAC scheme for 

unknown dynamic systems can significantly improve 

tracking performance despite sensor uncertainty [21]. 

2. Modify MRAC by Estimating Sensor Bias 

     In this section, we use a bias estimator that is part of the 

adaptive control law and uses measurable values that can 

limit state tracking error while guaranteeing signal constraint 

[1]. Let's first define  �̂�, which is an estimate of the unknown 

sensor bias 𝛽. Using this �̂�, we define a modified state such 

that �̅�(𝑡) ∈ 𝑅𝑛: 

                            (1) �̅� = 𝑦 − �̂� 

(2) �̅� = 𝑥 + 𝛽 − �̂� = 𝑥 + �̃� 

     Given �̃� = 𝛽 − �̂� (which is defined as a bias estimation 

error), the structure of the adaptive control law is as follows: 

                
𝑢 =  �̂�1

𝑇𝑦 + �̂�2𝑟 + �̂�3               (3)                                     

     Here �̂�1(𝑡) ∈ Rn×m , �̂�2(𝑡) ∈ Rm×mr
  ,and �̂�3(𝑡) ∈ Rm 

are comparative benefits, ( �̂�3 The auxiliary input is for better 

performance which helps us in the simulation.) So the 

closed-loop modified state equation is: 

            

(4) 
�̇̅� = 𝐴𝑥 + 𝐵(�̂�1

𝑇𝑦 + �̂�2𝑟 + �̂�3) + �̇̃�                   

=  𝐴𝑥 + 𝐵(𝐾1
𝑇𝑦 + 𝐾2𝑟 + 𝑘3) + 𝐵(�̃�1

𝑇𝑦 +

�̃�2𝑟 + �̃�3) + �̇̃�         

1. = (𝐴 + 𝐵𝐾1
𝑇)𝑥 + 𝐵(�̃�1

𝑇𝑦 +

�̃�2𝑟 + �̃�3) + 𝐵𝐾2𝑟 + 𝐵𝑘1
𝑇𝛽 +

𝐵𝑘3 + �̇̃�     

     Here are �̃�1 = �̂�1 − 𝐾1   , �̃�2 = �̂�2 − 𝐾2   and   �̃�3 = �̂�3 −
𝑘3 

Assume the matching conditions for the ideal interests of 𝐾1, 

𝐾2 and 𝑘𝟑: 

   (5) 
𝐵𝑘1

𝑇𝛽
= −𝐵𝑘3 

 𝐵𝑚 = 𝐵𝐾2  𝐴𝑚

= 𝐴
+  𝐵𝑘1

𝑇  

 

Given (5) and pasting (2) into (3), we will have: 

                                (6) 
�̇̅� = 𝐴𝑚�̅� + 𝐵𝑚𝑟 + 𝐵(�̃�1

𝑇𝑦

+ �̃�2𝑟 + �̃�3)

− 𝐴𝑚𝛽 + �̇̃� 

 

The measurable auxiliary error signal �̂�(𝑡) ∈ 𝑅𝑛using �̅� is 

defined as: 

           (7) 
�̂� = �̅� − 𝑥𝑚 

(8) 
 �̂� = �̅� − 𝑥𝑚 + �̃�

= 𝑒 + �̃� 

(9) 
�̇̂� = �̇̅� − �̇�𝑚 

(10) 
�̇̂� = 𝐴𝑚�̂� + 𝐵(�̃�1

𝑇𝑦 + �̃�2𝑟 + �̃�3)

− 𝐴𝑚�̃� + �̇̃� 

 

     The following theory updates the obtained comparative 

gain and bias estimation rules that guarantee the closed-loop 

signal limitation as well as the tracking error limitation. 

 

         

(11) 

�̇̂�1 = −𝛤1𝑦�̂�𝑇𝑃𝐵    

�̇̂�2 = −𝛤2𝐵𝑇𝑃�̂�𝑟𝑇    

�̇̂�3 = −𝛤3𝐵𝑇𝑃�̂�    

 

     While 𝛤3 ∈ 𝑅𝑚×𝑚  and 𝛤2 ∈ 𝑅𝑚×𝑚 and 𝛤1 ∈ 𝑅𝑛×𝑛, the 

positive definite matrices are symmetrically stable and the 

bias estimation law is: 

(12) �̇̂� = −𝜂𝑃−1𝐴𝑚
𝑇 𝑃�̂� 

 

     Here 𝜂 ∈ 𝑅 is an adjustable positive constant gain, which 

guarantees the constraint of all closed-loop signals, including 

adaptive gain and bias estimation with 𝑒(𝑡) tracking error. 

𝑉 =  �̂�𝑇𝑃�̂� + ∑ �̃�1𝑖
𝑇𝑛

𝑖 𝛤1
−1�̃�1𝑖 + ∑ �̃�2𝑖

𝑇𝑚𝑟
𝑖 𝛤2

−1�̃�2𝑖 +

�̃�3
𝑇𝛤3

−1�̃�3 +
1

𝜂
�̃�𝑇𝑃�̃�                                                        (13) 
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     Here index i shows columns �̃�1 and �̃�𝟐. By deriving time 

from (13), in (1) and (11) and the properties of the trace 

matrix and the resulting interest rate laws in (11), we obtain 

the following equation. 

(14) 
�̇� < −�̂�𝑇𝑄�̂� − 2�̂�𝑇𝑃𝐴𝑚�̃� − 2�̂�𝑇𝑃�̇̂�   

−
2

𝜂
�̃�𝑇𝑃�̇̂� 

 

Using the equation of the bias estimation law (11) in (13) we 
have: 

 

�̇� < −�̂�𝑇𝑄�̂� − 2�̂�𝑇𝑃𝐴𝑚�̃� + 2𝜂�̂�𝑇𝐴𝑚
𝑇 𝑃�̂� + 2�̃�𝑇𝐴𝑚

𝑇 𝑃�̂�    

= −�̂�𝑇𝑄�̂� − 𝜂�̂�𝑇𝑄�̂� = −(1 + 𝜂)�̂�𝑇𝑄�̂� (15) 

 

      Adaptive control law in theory 1 guarantees stability 

(signal limiting) and limiting error tracking and boundary 

states, but since it is a direct comparative control method, our 

parameters do not converge to the main parameters in the 

system. Therefore it would be more desirable to obtain 

asymptotic tracking. In the next section, to achieve 

asymptotic tracking, we will deal with an asymptotic stable 

bias estimator that is achievable separately. 

3. MRAC with Asymptotic Stable Bias Estimator 

Suppose an asymptotic stable bias estimator is available. 

Asymptotic stable means that the estimation error is zero and 

 �̂� will converge to 𝛽. So with these conditions in mind, we 

want to design an asymptotically stable system. 

This section shows how an asymptotic bias estimator can be 

used in MRAC law to allow for asymptotic state tracking [1]. 

In fact, given these conditions, we want to design an 

asymptotically stable system. To do this, we first need to 

consider a bias estimator whose estimation error becomes 

zero. So we assume a bias estimator with matching error 

dynamics as follows: 
             (16) 

�̇̃� = 𝐴𝛽�̃�     

     In this respect, �̂� is an estimate of 𝛽 and �̃�(𝑡) = 𝛽 − �̂�(𝑡) 

is an error estimate. 

 

(17) �̇̂�1 = −𝛤1𝑦�̂�𝑇𝑃𝐵     

�̇̂�2 = −𝛤2𝐵𝑇𝑃�̂�𝑟𝑇   

�̇̂�3 = −𝛤3𝐵𝑇𝑃�̂�     

 

     Whereas 𝛤3 ∈ 𝑅𝑚×𝑚 and 𝛤2 ∈ 𝑅𝑚×𝑚  and 𝛤1 ∈ 𝑅𝑛×𝑛 are 

fixed positive symmetric matrices and guarantee that all 
closed-loop signals include the matching benefits are finite 

and the tracking error 𝑒(𝑡)will tend to zero. (While t → ∞) 

 

(18) 𝑉 =  �̂�𝑇𝑃�̂� + ∑ �̃�1𝑖
𝑇

𝑛

𝑖

𝛤1
−1�̃�1𝑖

+ ∑ �̃�2𝑖
𝑇

𝑚𝑟

𝑖

𝛤2
−1�̃�2𝑖

+ �̃�3
𝑇𝛤3

−1�̃�3 + �̃�𝑇𝑃𝛽�̃� 

     Here, the index i represents the columns �̃�1 and �̃�2, and 

𝑃𝛽 = 𝑃𝛽
𝑇 ∈  𝑅𝑛×𝑛 is a positive definite matrix for Lyapunov 

inequality. 
(19) 𝐴𝛽

𝑇 𝑃𝛽 + 𝑃𝛽𝐴𝛽 < −𝑄𝛽  

 

For certain positive matrices, 

(20) 
𝑄𝛽 − 𝑄𝛽

𝑇 ∈ 𝑅𝑛×𝑛
   

 

     By deriving the relation of (18) to time using equations 

(1), (10), (16) and (19) and matrix tracking properties, the 

following statement is easily obtained. 

 

(21) 
�̇� ≤ −�̂�𝑇𝑄�̂� − 2�̂�𝑇𝑃(𝐴𝑚 − Aβ)�̃�

− �̃�𝑇𝑄𝛽�̃� + 2�̃�3
𝑇{𝐵𝑇𝑃�̂�

+ Γ3
−1�̇̂�3} 

+2𝑇𝑟 [�̃�1
𝑇 {𝑦�̂�𝑇𝑃𝐵 + Γ1

−1�̇̂�1}]

+ 2𝑇𝑟 [�̃�2
𝑇 {𝐵𝑇𝑃�̂�𝑟𝑇

+ Γ2
−1�̇̂�2}] 

Given the updated rules of interest (17) and the equation (21) 
we have: 

(22) 
�̇� ≤ −�̂�𝑇𝑄�̂� − 2�̂�𝑇𝑃(𝐴𝑚 − Aβ)�̃� −

�̃�𝑇𝑄𝛽�̃� = −𝑧𝑇�̅�𝑧        

 

Given 𝑧 ∈ 𝑅2𝑛, we define z as: 

(23) 
𝑧 = [�̂� �̃�]𝑇         

 

And the matrix �̅� ∈ 𝑅2𝑛×2𝑛 is thus defined: 

 

(24) �̅� = [
𝑄 𝑃(𝐴𝑚 − Aβ)

(𝐴𝑚 − Aβ)
𝑇

𝑝 𝑄𝛽

]   

 

 

Since Q is a positive definite, the Q matrix is also positive if: 

(25) 𝑄𝛽 − (𝐴𝑚 − Aβ)
𝑇

𝑃𝑄−1𝑃(𝐴𝑚 − Aβ) >

0    

 

𝑄𝛽 can be chosen to fulfill (25). 

�̇� < 0 and 𝑉(𝑇) is restricted to all 𝑇. Also �̂�(𝑡), �̂�(𝑡), 𝑦(𝑡), 

�̂�1, �̂�2 ,and �̂�𝟑  are all constrained �̃�(𝑡)and �̂�(𝑡) ∈ 𝐿2. 

     We have (16) and (10) and unlimited closed-loop signals: 

�̇̂�(𝑡) , �̇̃� ∈ 𝐿∞ 
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lim
𝑡→∞

�̂�(t) = 0   

lim
𝑡→∞

�̃�(𝑡) = 0   

lim
𝑡→∞

𝑒(t) = 0 

�̇̂�1𝑖 , �̇̂�2𝑖 , �̇̂�3 ∈ 𝐿2 ∩ 𝐿∞    

     So we can conclude: 

�̈̂�1𝑖 , �̈̂�2𝑖 , �̈̂�3 ∈ 𝐿∞   

lim
𝑡→∞

�̇̂�1𝑖 = 0 

lim
𝑡→∞

�̇̂�2𝑖 = 0 

lim
𝑡→∞

�̇̂�3 = 0 

As stated at the beginning of this section, to have an 

asymptotically stable bias estimator, we need to set the 

estimation error to zero assuming  �̂� to 𝛽 and: 

 lim
𝑡→∞

�̃�(𝑡) = 0  

     Therefore, we will use the Kalman filter to achieve a non-

bias estimation to achieve this goal. (The bias-free estimate 

is that 𝑥 tends to 𝑥, thus �̂� t to 𝑦, accurately detects 𝛽.) 

3.1. Kalman Filter 

     The Kalman filter is an efficient recursive filter that 

estimates the state variables of a dynamic system utilizing a 

set of indirect and distorted noise measurements. The 

original Kalman filter format is based on a white noise linear 

system, which is why it is guaranteed only under the 
assumptions of linearity of the system as well as white and 

system noise independent and Kalman filter optimality. 

Therefore, to use the Kalman filter, accurate information on 

the nature of the noise, including mean, variance, and 

standard deviation, must be available, which is sometimes 

difficult or impossible. The purpose of the Kalman filter is 

to estimate system state variables based on measurements 

with noise and random variables. The Kalman filter is a 

powerful and general tool for combining information in 

uncertain and dynamic environments. In most cases, the 

information extracted by this filter is very accurate. Before 

we get into the Kalman filter discussion, let's first briefly 
discuss random processes. 

4. Performance Testing of the Control Rules Provided 

      To test the efficiency of the different control rules 

presented in this paper, in the presence of unknown sensor 

bias, the following two simulations are performed. (In each 

of these cases an unknown bias is assumed to occur at t = 0.) 

4.1. Theory 1 (MRAC Feedback Bias Estimation) 

     The state variables for the longitudinal dynamic model 

are the four state variables: Actual velocity s/m) ), angle of 

attack α )Degree (, ground angle θ )Degree   ( and ground 

velocity q )Degree/second). Elevator and throttle inlet are the 

control inputs, denoted by 𝑢𝑒 (in degrees) and 𝑢𝑡, 

respectively. Input 𝑢𝑒 shows the elevator position (in 

degrees) and the input The 𝑢𝑡 valve shows the coefficient of 

strength by a fixed operating scale, so no unit is used for 𝑢𝑡 

[1] The units of measurement of the 𝛽 components that 

represent biases in (𝑣, 𝛼, 𝜃, 𝑞)Are, respectively, m/s, 

degrees, degrees, degrees per second By measuring bias 

values, implement the standard MRAC control law, which 

applies, by conventionally or optionally, �̂�1(𝑡) and �̂�2(𝑡) at 

half their actual value. (Initializes) and matching interests are 

selected on a contractual or optional basis. 

 

 

(26) 
𝐴

= [

−0.0062 −0.0815 −0.1709 −0.0026
−0.0344 −0.5717 0 1.0050

0 0 0 1.0000
0.0115 −1.0490 0 −0.6803

]   

 

 

(27) 𝐵 = [

0 1.3287
−11.4027 −0.0401

0 0
−44.5192 0.8824

] 

(28) 𝑥(𝑡) = [𝑣 α 𝜃 𝑞]𝑇       

(29) 𝑢(𝑡) = [𝑢𝑒 𝑢𝑡]𝑇 

 

(30) 𝐴𝑚 = 𝐴 +  𝐵𝑘1
𝑇    

(31) 𝐵𝑚 = 𝐵𝐾2    

 

Here 𝐾1 is the LQR gain designed for optimal closed-loop 

performance. Interest 𝐾2 = 𝐿2, such that 𝐵𝒎 = 𝐵. In the 

simulation, 𝐾2 is chosen to provide the appropriate scale 𝑟(𝑡) 

(reference input). The unknown constant bias, in the case 

measurement, is either optionally or optionally selected as 
follows: 

(32)     𝛽 = [5 2 −1 10] 

  

 

(33) 

 

�̂�1(𝑡) = 0.5𝐾1    

�̂�2(𝑡) = 0.5𝐾2 

Γ1 = 0.005𝐼4 

Γ2 = 0.005𝐼2 

       Figure 1 and Figure 2 show that by examining the 

simulation results, we conclude that the law of comparative 
control in Theory 1, the stability (limited signal) and the 

limitation of the tracking error (which is zero). It ensures that 

the states are slow, but by comparing xm and x̅, we find that 

our parameters do not converge with the main parameters in 

the system. Therefore, the limitation of the closed-loop 

signal or the limitation of the tracking error cannot be 

proved. However, in this example, the tracking error appears 

to be close to some constant non-zero values. So we need to 

have a correct estimate of β.   
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A.Parameter v

 

B. Parameter α

 
C.Parameter θ 

 
D. Parameter q 

 

Figure 1. Show model reference modes (xm) of theory 1 

A. Parameter comparison v 

 
B. Parameter comparison α 

 
C. Parameter comparison β 

 
D. Parameter Comparison q 

Figure 2. Comparison of the parameter (xm) and  )x̅) of Theory 1 

4.2. Theory 2 (Using Asymptotic Bias Estimator by MRAC) 

     In theory 2 (asymptotic bias estimator) almost all the 

parameters are fully corrected and their values are closely 

converged to the reference model. Therefore, the more 

accurate the �̂� estimate is, the better x can be measured and 

the closer to x̅. The figures below show the accuracy of the 

material. Figures (3) and (4) show the correctness of the use 

of the Kalman filter to accurately estimate β. In Theory 1, by 

adding the feedback bias estimation based on the MRAC 

control law, the actual velocity parameters are v(s/m), angle 

of attack α (degrees), ground angle θ (degrees) and ground 

velocity q (degrees/seconds), to some extent. It is modified, 

but because it is a direct adaptive method, the device's 

parameters do not converge with the main parameters in the 

system. In theory 2 (Asymptotic Bias Estimator), almost all 

parameters are completely corrected and their values are 

close and convergent to the reference model. So the more 

accurate the estimate (β), the more accurate the (�̂�).  As a 

result, the measurable x̅ will get better and closer to 𝑥𝑚. 

 

 
A. Parameter v 

 
B. Parameter α 

 
C. Parameter θ 

  

 
D. Parameter q 

Figure 3. Representation of model reference states (xm) of 
Theory 2 
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A. Parameter comparison v 

   
B. Parameter comparison α 

   
C. Parameter comparison β 

   
D. Parameter Comparison q 

Figure 4. Comparison of the parameters (x̅) and (xm) of theory 
2 

5. Conclusion 

     This paper shows that bias can be estimated and used by 

MRAC to guarantee asymptotic state tracking and closed 

loop stability. For accurate estimation of β (bias), we used 

Kalman filter. The purpose of the Kalman filter is to estimate 

system state variables based on measurements with noise and 

random variables. Based on the simulation results, steady-

state tracking errors are improved. In fact, the tracking error 

tends to zero. In Theory 1, by adding the feedback bias based 

on the MRAC control law, the actual velocity parameters are 
v(m/s), angle of attack α (degree), ground angle θ (degree) 

and ground velocity q (degree/second), partly. It is modified, 

but since it is a straightforward comparative method, the 

parameters of the device do not converge to the main 

parameters in the system. In Theory 2 (Asymptotic Bias 

Estimator), we obtain an accurate estimate of the bias using 

the Kalman filter, As a result, almost all parameters are fully 

corrected and their values are closely converged to the 

reference model. 
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