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Prediction of the energy output of solar energy systems is a field of research drawing 

significant attention due to its increasing share in the energy market among other factors. 

By integrating many techniques and simulating complicated dynamics, machine learning 

algorithms have emerged as an option to conventional approaches to handle these problems 

and offer resolutions that enhance the efficiency of photovoltaic systems. Research on 

machine learning and photovoltaic systems, in particular, has advanced rapidly in the last 

five years thanks to the involvement of deep learning in photovoltaic systems. Today, more 

potent models are being used to analyze structured data, including multidimensional time 

series, pictures, and videos. This necessitates the review of novel approaches that tackle 

issues in photovoltaic systems utilizing cutting-edge machine learning modellings. Machine 

learning methods are proving to be very efficient in various energy-related applications 

including consumption prediction, intrusion detection, and output prediction. This research 

aims to compare a number of machine learning algorithms in predicting the power output of 

solar panels using 13 different parameters. The paper contributes to the field by building a 

comprehensive model of output prediction providing an accurate comparison of several 

methods. 

 

1. Introduction 

Electricity is a crucial component of any nation's 

industrialization, urbanization, and economic expansion. 

Electricity is produced using a variety of traditional and 

unconventional energy sources. The demand for electricity 

is increasing every day and nonrenewable power resources 

cannot keep up with this demand. Because they are adaptable 

and environmentally beneficial, solar energy systems are 

becoming more and more popular. The adoption of 

interactive solar systems has increased significantly over the 

past 20 years in the area of solar energy. Solar power is an 

abundant and environmentally friendly source of electricity. 

In theory, its potency far exceeds the global power need. 

Rather, the energy generation from solar energy stations 
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depends on the sun irradiation and ecological circumstances 

(clouds’ presence, latitude, shading and terrain, aerosol 

amount in the content of the atmosphere, temperature, and 

air humidity).  However, installing photovoltaic systems still 

entails high prices and problems with efficiency that must be 

fixed. The prices of installing photovoltaic systems are still 

being reduced as efforts are undertaken to boost their 

effectiveness, facilitate their installation, and couple them to 

electrical grids for solar power systems, with a particular 

emphasis on deep learning. It looks at how machine learning 

is used in photovoltaic systems for control, islanding 

identification, management, problem detection, and 

diagnostics, as well as sizing, site adaptation, and forecasting 

irradiance and power generation.  
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One of the renewable energy sources with the fastest 

growth rates in the world is sun power.  Solar energy might 

be one of the best sources for future energy demand. Given 

that the renewable resources are plentiful and offered 

without charge, the implementation of sustainable power 

sources like sun power has a far larger potential. Solar power 

is the energy that is obtained from sunlight and then 

transformed into electricity [1]. This conversion may 

occasionally be carried out via concentrated sun energy, 

photovoltaics, or a combination of both. Since sun energy 

does not emit any greenhouse gases, it is a clean, self-

sufficient resource that also lessens the carbon impact.  

The World Energy Council claims that the solar constant 

represents the amount of solar energy as 1367 W/m2. The 

overall sun flux obtaining the superficies of earth is 

computed to be 1.08108 GW, and the whole amount of 

power obtaining the superficies is 3400000 EJ each year, 

taking into account both absorption and scattering. This is 

around 7000–8000 times the annual primary energy usage 

for the entire world. Only 0.1 percent of this power can be 

transformed with a performance as low as 10%, producing 

roughly 10000 GW of electricity, rounding the total to about 

6000GW. According to the International Energy Agent, 11 

percent of the energy requirements of the world will be met 

through solar energy in thirty years. It is anticipated that the 

use of sustainable power resources would greatly grow by 

2030, with an annual growth rate of 7.6 percent [2]. All the 

same, installing photovoltaic mechanisms still entails high 

prices and problems with performance that must be fixed. 

The prices of installing photovoltaic mechanisms are still 

being reduced as efforts are undertaken to boost their 

effectiveness, facilitate their installation, and couple them to 

electrical grids.  

The rest of the paper is organized as follows: Section 2 

presents a review of the existing literature followed by 

Section 3 which provides an overview of the methodology 

employed. The data sources and the summary of results are 

presented in Section 4. Finally, concluding remarks are 

provided in Section 5. 

2. Literature Review 

The abundance of the studies comparing various models 

and putting forth novel hybrid techniques demonstrates that 

forecasting solar energy production is still a difficult task to 

do because the outcomes depend on many distinct variables. 

Reviews on the use of artificial intelligence in power 

mechanisms have been made in this direction and some of 

the most pertinent and fascinating ones are those put forth by 

Tina et al. [3], Youssef et al. [4], Forootan et al. [5], and 

Kurukuru et al. [6]. The battery storage capacity, optimum 

amount of solar panels, azimuth, and tilt angles needed in 

photovoltaic mechanisms have all been determined using 

machine learning approaches. Additionally, a number of 

methods for measuring the photovoltaic systems installed by 

residential customers have been established.  

Using data from behind-the-meter, Kumar et al. utilized 

Artificial Neural Networks to calculate the photovoltaic size, 

inclination, and azimuth. The Pecan-Street dataset, which 

records the behavior of more than 1.3K customer loads over 

the course of a year, served as the source of the dataset used 

[7, 8]. The PCLib toolkit and the mechanism advisor 

modelling simulator were used to simulate photovoltaic 

generation [9]. The minimal annual net load levels were 

utilized as the input values. The modellings utilized to 

forecast photovoltaic size were put to the test in a variety of 

author-generated scenarios, such as photovoltaic estimations 

for 1K analyze customers, prediction with ranking azimuth 

and tilt taking dataset errors into account, diverse net load 

information resolutions, and the added information with 

incorrect labels. Khatib and Elmenreich employed a 

generalized Recurrent Neural Networks with the primary 

goal of estimating the photovoltaic array and battery sizing 

ratio. The load probability index loss, longitude, and latitude 

were used to calculate this sizing. The modelling was 

validated utilizing a simulation of sun irradiation on an 

hourly basis and load need, resulting in an average real error 

percentage of 0.6% [10]. 

Malof et al. suggested a machine learning technique to 

map photovoltaic systems in high-solution aerial 

photography by defining single-track photovoltaic arrays, 

their extent, and energy generating capacity over vast 

geographic fields [11]. Convolutional Neural Networks 

semantic segmentation, which offers pixel-by-pixel labels 

for an input image, was used to produce it. On the basis of 

the identification made possible by the classifier, a prediction 

to determine the sun panels’ sun performance is also 

suggested. The object-sourced performance metric gave the 

model a precision of 0.76, indicating accuracy. The 

researchers initially evaluated the superficies field of the 

photovoltaic array placed using the segmentation procedure 

in order to compute the installed solar capacity. Then, to 

anticipate the installed photovoltaic array capacity, basic 

linear regression parameters based on surface area were 

utilized. By estimating the parameters for each array using 

color imagery, the model was able to attain a correlation 

coefficient of 0.91. 

Solar irradiance and temperature are two weather 

variables that have an important effect on the production of 

photovoltaic energy. As a result of this energy source’s 

variable production levels, it is challenging for energy firms 

to balance electricity consumption and production when 

utilizing photovoltaic systems. So, a number of Machine 

Learning algorithms have been put into practice to predict 

sun irradiation and the energy generation from photovoltaic 

mechanisms. Data from Temixo were used by Tovar et al. to 

anticipate photovoltaic power using a five-layer 

Convolutional Neural Networks Long Short-Term Memory 

model [12, 13]. Forecasting horizons from 10 minute to 180 

minute were used [14]. 

The objective of Suresh et al. was to use Convolutional 

Neural Networks to predict the production of solar 

photovoltaic. For medium- and short-term prediction, a 

Convolutional Neural Networks-Long Short-Term Memory, 

multi-headed Convolutional Neural Networks, and ordinary 

Convolutional Neural Networks methods were used. An 

auto-regressive moving average model and multiple linear 

regression were then put up against the models for 

comparison. Solar irradiance, ambient temperature, wind 

speed, and the photovoltaic module temperature taken in 5-

minute windows were the variables used for prediction. 

These characteristics were selected based on the 
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international energy agency report [15]. According to the 

findings of that study, a straightforward Convolutional 

Neural Networks and a Convolutional Neural Networks 

combined with a Long Short-Term Memory network applied 

admirably for prediction time horizons of one hour, one day, 

and one week [16]. 

Gated Recurrent Unit and Encoder-Decoder Long Short-

Term Memory networks were compared by Narvaez et al. 

for weekly and daily time horizon estimations. Both in daily 

and weekly timeframes, the Long Short-Term Memory 

performed better than the Gated Recurrent Unit networks 

[17]. 

For the forecast of every half hour diffuse horizontal sun 

radiation using solely the worldwide horizontal radiation and 

a geographical position, Miranda et al. compared various 

Machine Learning techniques, containing Artificial Neural 

Network. Data for six different sites in Colombia were 

acquired from the national sun irradiation database [18]. 

Over several sites, the researchers obtained coefficients 

varying from 0.9983 to 0.9974 [19]. 

As a short-term forecaster for photovoltaic power, Park 

and Ahmed used the Recurrent Neural Networks. Power data 

that was gathered in real-time was used to train this model. 

The module temperature, sun radiation, wind speed, outside 

temperature, and relative moisture were the data that were 

gathered. The predicting was done for time horizons of 5-

minute, 15-minute, 1 hour, and 3 hours. The results of the 

trials showed that, for the short-term forecast, the suggested 

model outperformed the auto-regressive combined moving 

mean and support-vector regression with Random Forest 

modellings in terms of prediction accuracy. For forecasting 

across time horizons of 5 minutes and 15 minutes, the 

Recurrent Neural Networks model’s accuracy was 99.1% 

and 98.6%, respectively, while for forecasting over time 

horizons of 1 hour and 3 hours, it was 97.4% and 96.2% [20].  

Mahmood and Hossain classified historical radiation 

information into various sky classes using a K-nearest-

neighbors technique. The researchers displayed that the 

suggested modelling surpassed modellings such as Recurrent 

Neural Networks, extreme learning machines, and general 

regression neural network [21]. Pan et al. utilized a short-

term sun-based production predicting methodology based on 

Long Short-Term Memory with temporal attention system 

[22]. 

In spite of the applicability of machine learning algorithms 

to the renewable energy field, there is a need to build 

practical approaches for the practitioners as part of their 

feasibility studies. To the best of our knowledge, this is the 

first study that provides a comparison of several machine 

learning algorithms in predicting the power output of all 

major solar panel brands providing 350W energy output 

based on 13 electrical properties. The paper contributes to 

the field by building a comprehensive model of output 

prediction providing an accurate comparison of several 

methods.  

3. Machine-Learning Methodology 

The machine-learning is a combination of computer 

science and artificial intelligence which concentrates on the 

utilization of algorithms and data to imitate the way that 

people learn, gradually developing its accuracy. Machine 

learning is a significant element of the data science. By the 

utilization of the statistical methodologies, algorithms are 

trained to make predictions or classifications, and to unearth 

main perceptions in planning of data mining. These insights 

followed by the use of decision-making methods in business 

applications, help reaching optimal decisions. As big data 

proceeds to grow and expand, the market demand will also 

raise for information scientists. They will be needed to aid 

identifying the information necessary to answer the most 

important business questions. 

Machine learning algorithms are typically constructed 

using frameworks that expedite solution development, such 

as PyTorch and TensorFlow. Various machine learning 

algorithms find widespread use in this field. Some of these 

include: Logistic Regression: A supervised learning 

algorithm used for making predictions involving binary 

outcomes, such as "yes" or "no" answers to questions. The 

linear regression method is employed to estimate digital 

values and is based on a linear relationship between multiple 

factors. Neural networks, which have integrated a very high 

number of processing nodes are planned to apply likewise to 

the people brain. Implementations that benefit from capacity 

of neural networks for sample finding contain natural 

language translation, imagery production, speech 

recognition, and picture identification. 

The classification of data into categories and the 

regression of numerical values are both possible uses for 

decision trees. The decision-trees employ a branching series 

of connected decisions that can be visualized as a tree. 

Unlike the black box of the neural network, decision-trees 

are simple to audit and validate, which is one of their 

advantages. Data patterns can be found via unsupervised 

learning using clustering algorithms, allowing the data to be 

classified. Through spotting distinctions between data points 

that people have missed, computers can aid information 

scientists. By aggregating the findings from various decision 

trees, the machine learning algorithm in a random forest 

predicts either a value or category [23]. 

The most prevalent Machine Learning methods that have 

been used on photovoltaic systems are the ones with a focus 

on Deep Learning techniques. Artificial Neural Networks 

(ANN) are modellings that are encouraged in the fact that 

neurons, as a processing unit, are connected in the brain of 

people [24]. Several examples of supervised learning and 

reinforcement learning methods used with photovoltaic 

systems are given in Table 1 [25]. 

An artificial neural network involves a process that 

translates an n-dimensional input to an r-dimensional output. 

It is built using the serial and parallel connections of neurons, 

which are the building blocks of a basic cognitive processes. 

Each of the neurons calculates a weighted sum of its own 

inputs that is then converted utilizing an enabling process. 

The information operation brings up the operation of finding 

the weights for each of the neurons in a way that the artificial 

neural network modelling is able to exactly anticipate the 

output for a given input [26]. An agent can learn check 

policies by trial-and-error utilizing rewards offered through 

an interactive environment, which is referred to as a 
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“Markov Decision Operation”, thanks to the Reinforcement 

Learning technique [27]. 

 

 

 

Table 1. Several examples of supervised and reinforcement learning methods used with photovoltaic systems. 
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A Reinforcement Learning problem must have three key 

components: the state (the agent's current status), the reward 

(the environment's feedback), and the strategy (the 

procedure that establishes the relationship between the 

agent's states and its actions). Finding a set of actions that 

maximizes the reward from the agent's interactions with the 

environment must be the algorithm's main objective. State–

action–reward–state–action, Q-learning, and their 

variations are some of the methods now employed to carry 

out the learning process in Reinforcement Learning [28]. 

Some methods, referred to as Q-tables, partition the 

continual states and field of action into a finite number of 

areas. Another group of techniques employs DL modellings 

and Artificial Neural Networks to simulate a policy 

function. The Q-table is substituted through a nonlinear 

continual process modeled in an artificial neural network 

[29], enabling continuous state and action spaces [30].  

Deep Deterministic Policy Gradient, Soft-Actor Critic, 

Deep Q-Learning, and Twin Delayed Deep Deterministic 

Policy Gradient are a few of these methods. Convolutional 

Neural Networks are a type of Artificial Neural Networks 

using filters of a specific length and a hierarchical approach 

to extract key characteristics from a 1-dimensional, 2-

dimensional, or 3-dimensional systems. Recurrent Neural 

Networks are a class of networks that can classify events or 

predict the future outcomes on information arrays of any 

length. By analyzing the frame's connections that point 

backwards, interconnections between the frames can be 

inferred [31]. 

A component of the analyzed frame and the output of 

the earlier estimation, which was based on the last analyzed 

frame factor, are both inputs to each of the neurons in the 

Recurrent Neural Network layer. According to this 

structure, Recurrent Neural Networks allow the prior 

outputs’ utilization as inputs while having secret units that 

use hidden states to account for the past [32]. The goal of 

Gated Recurrent Units is to retain data from the past for a 

long time [33].  

This is accomplished through placing a series of 

characteristic between the edges of neighboring hidden 

units in Recurrent Neural Networks. This characteristic 

would function as a gate, controlling how much data the 

network can retain over time. More memory is preserved if 

this parameter value is close to one, but memory of earlier 

stages would be lost if it were close to zero. A unique 

variety of Recurrent Neural Network termed Short- and 

Long-term Memory is able to learn long-term dependencies 

[34].  

It can retain data for extended time periods due to a 

memory cell called cell state, which stores past information 

and is updated using two separate parameters that are 

comparable to those found in Gated Recurrent Units. These 

characteristics enable former data to be forgotten or 

remembered, and novel data to be added to an exact degree. 

The cell state is then utilized to update the secret status of 

the widespread Recurrent Neural Network through utilizing 

another characteristic that permits exact parts of its data 

flow by the secret unit. 

These characteristics are the results of three simple 

Artificial Neural Network gates—the output gate, input 

gate, and forget gate—whose input is the earlier secret state. 

A method known as Support Vector Machines obtains a 

linear modelling for grouping [31]. The Support Vector 

Machine attribute is based on the idea of greatest margin, 

which refers to the separation between the nearest 

observations in either class and the separating hyperplane. 

A model called Random Forest is based on the decision-

trees that are built concurrently with input variables’ 
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random subsets. The class with the greatest votes is 

assigned by a Random Forest model using an example that 

has been run through all of the trained decision trees [35]. 

4. Summary of Results 

4.1. Data Summary 

For the purpose of this study, a list of major solar panel 

brands providing 350W of output is created. The 

characteristics (DC electrical properties) of these solar 

panels are given in Table 2. The Matrix in Table 3 shows 

the correlation relations among thirteen electrical 

properties. 

The histogram for PTC is displayed in Figure 1. The 

PTC-STC scatter plot is shown in Figure 2. 

 

 

Table 2. 350 W Solar panel characteristics (DC electrical properties) 

 PTC STC Peak Power Cells Imp Vmp Isc Voc NOCT CoPow CoVol Fuse 

1 309,10 162,20 16,22 0,00 60,00 8,13 42,98 8,93 51,47 50,00 -0,48 -0,19 15,00 

2 321,32 180,40 18,04 1,50 72,00 9,07 38,60 9,57 47,20 45,00 -0,41 -0,14 15,00 

3 326,55 191,80 19,18 1,50 120,00 10,48 33,40 11,04 40,20 44,00 -0,36 -0,12 20,00 

4 318,80 180,90 18,09 2,50 72,00 9,08 38,58 9,53 47,01 46,00 -0,38 -0,13 15,00 

5 321,15 180,40 18,04 1,50 72,00 9,10 38,48 9,81 47,37 46,70 -0,38 -0,13 15,00 

6 319,00 180,40 18,04 1,50 72,00 9,13 38,34 9,58 46,89 45,00 -0,40 -0,14 20,00 

7 321,33 180,60 18,06 0,50 72,00 9,09 38,70 9,60 47,00 45,00 -0,41 -0,16 15,00 

8 323,85 174,40 17,44 1,00 144,00 9,11 38,43 9,58 46,27 45,00 -0,37 -0,14 20,00 

9 322,72 180,40 18,04 1,50 72,00 8,94 39,10 9,38 47,50 45,00 -0,39 -0,14 15,00 

10 324,40 189,50 18,95 1,50 120,00 10,42 33,60 11,19 40,10 45,00 -0,35 -0,11 20,00 

11 319,20 180,40 18,04 1,00 72,00 9,18 38,14 9,70 47,40 45,00 -0,39 -0,14 15,00 

12 322,72 180,40 18,04 1,50 72,00 8,94 39,10 9,38 47,50 45,00 -0,39 -0,14 20,00 

13 324,70 180,00 18,00 1,00 72,00 9,03 38,80 9,50 46,40 45,00 -0,39 -0,14 15,00 

14 326,60 188,00 18,80 1,50 120,00 10,48 33,40 11,04 40,20 44,00 -0,36 -0,12 20,00 

15 317,30 175,50 17,55 1,00 72,00 9,03 38,80 9,62 47,40 46,00 -0,45 -0,16 15,00 

16 317,10 180,40 18,04 1,00 72,00 9,01 39,13 9,65 47,57 45,00 -0,39 -0,15 15,00 

17 329,15 195,10 19,51 2,50 120,00 10,37 33,76 10,97 41,11 43,00 -0,34 -0,11 20,00 

18 318,70 174,40 17,44 1,00 72,00 9,00 38,90 9,72 46,70 44,60 -0,36 -0,14 20,00 

19 321,32 180,40 18,04 2,50 72,00 9,16 38,20 9,56 46,70 45,00 -0,41 -0,14 15,00 

20 322,50 179,50 17,95 0,50 72,00 8,89 39,40 9,50 48,80 45,00 -0,43 -0,15 15,00 

21 326,60 188,00 18,80 1,50 120,00 10,48 33,40 11,04 40,20 44,00 -0,36 -0,12 20,00 

 

Table 3. Correlation Matrix 

 PTC STC Peak Power Cells Imp Vmp Isc Voc NOCT CoPow CoVol Fuse 

PTC 1,000 0,854 0,854 0,485 0,694 0,787 -0,811 0,717 -0,789 -0,841 0,762 0,851 0,518 

STC 0,854 1,000 1,000 0,612 0,574 0,890 -0,905 0,843 -0,860 -0,807 0,761 0,906 0,456 

Peak 0,854 1,000 1,000 0,612 0,574 0,890 -0,905 0,843 -0,860 -0,807 0,761 0,906 0,456 

Power 0,485 0,612 0,612 1,000 0,250 0,461 -0,493 0,380 -0,451 -0,478 0,551 0,672 0,232 

Cells 0,694 0,574 0,574 0,250 1,000 0,787 -0,781 0,775 -0,809 -0,512 0,667 0,672 0,722 

Imp 0,787 0,890 0,890 0,461 0,787 1,000 -0,998 0,986 -0,991 -0,684 0,749 0,877 0,643 

Vmp -0,811 -0,905 -0,905 -0,493 -0,781 -0,998 1,000 -0,976 0,988 0,719 -0,771 -0,902 -0,641 

Isc 0,717 0,843 0,843 0,380 0,775 0,986 -0,976 1,000 -0,977 -0,602 0,720 0,834 0,640 

Voc -0,789 -0,860 -0,860 -0,451 -0,809 -0,991 0,988 -0,977 1,000 0,675 -0,772 -0,876 -0,683 

NOCT -0,841 -0,807 -0,807 -0,478 -0,512 -0,684 0,719 -0,602 0,675 1,000 -0,747 -0,779 -0,497 

CoPow 0,762 0,761 0,761 0,551 0,667 0,749 -0,771 0,720 -0,772 -0,747 1,000 0,909 0,654 

CoVol 0,851 0,906 0,906 0,672 0,672 0,877 -0,902 0,834 -0,876 -0,779 0,909 1,000 0,588 

Fuse 0,518 0,456 0,456 0,232 0,722 0,643 -0,641 0,640 -0,683 -0,497 0,654 0,588 1,000 
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Figure 1. Histogram PTC Figure 2. PTC-STC Scatter Plot 

4.2. Prediction of PTC with Machine Learning Methods 

This section provides the prediction performance of 

various machine learning methods. The results obtained by 

applying Linear Regression, XGBRegressor, Gradient 

Boosting Regressor, Decision Tree Regressor, and Random 

Forest Regressor are presented along with the error terms.  

a. Linear Regression: 

Regression model of one dependent and twelve 

independent variables is as it shown in Eqs. (1-2)  

y_pred = regressor.predict(X_test)   (1) 

PTC=STC.x1 + Peak.x2 + …..+ Fuse.x12  (2) 

Table 4 presents the factor coefficients obtained from 

linear regression. Figure 3 illustrates a comparison of the 

actual versus predicted values of PTC when linear 

regression is used for the prediction. 

Table 4. Regression Coefficients 

  STC Peak Power Cells Imp Vmp Isc Voc NOCT CoPow CoVol Fuse 

Coefficient 0,9504 0,095 
-

0,7759 
0,1135 

-

55,559 

-

7,8051 
5,9062 

-

2,7331 

-

0,2439 

-

30,841 

-

15,682 

-

0,1271 

 

 
Figure 3. Actual vs. Predicted PTC 

 

Average absolute error, average squared error, root 

average squared error, and R2 values reveal the performance 

of the method.  

Average Absolute Error:  2.16804 

Average Squared Error:  8.60751 

Root Average Squared Error: 2.93385 

R2:     -0.79481 

R2 evaluates how well the selected modelling fits in 

comparison to the null hypothesis, which is a horizontal 

straight line. R2 is negative since the selected modelling fits 

the data less well than a horizontal line. R2 can have a 

negative value without breaking any mathematical 

principles, as it is important to note that it is not always the 

square of anything. Only when the chosen modelling 

deviates from the data's trend and provides a worse fit then 

R2 becomes negative. Given these facts, the model has no 

meaning. R2 must be zero (or positive) and equals the 

correlation coefficient’s square, r, in linear regression with 

no restrictions. Only when the intercept or slope are 

confined in such a way that the "best-fit" line fits worse than 

a horizontal line is a negative R2 with linear regression 

conceivable. Whenever the best-fit modelling fits the data 

less well than a horizontal line, the R2 might be negative in 

a nonlinear regression. In conclusion, a negative R2 

indicates how badly the selected model matches the data 

compared to a horizontal line. 

b. XGBRegressor, Gradient Boosting Regressor, Decision 

Tree Regressor, Random Forest Regressor 
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Mean Absolute Error, Mean Squared Error, Root Mean 

Squared Error, and R2 values of the remaining ML methods 

are provided in Table 5. 

It can be observed from Table 5 that XGB Regressor and 

Gradient Boosting Regressor have the highest R2 values 

indicating their high performance. 

Table 5. Comparison of ML Methods 

 Regr XGB GBR DTR RFR 

MAE 2.1680432660917 1.7463457031250 2.50316838146860 2.0920000000000 1.9322400000002 

MSE 8.6075140578517 3.5851640925968 7.51061838005685 7.4176400000000 5.4656317931196 

RMSE 2.9338565162345 1.8934529549468 2.74055074393028 2.7235344682966 2.3378690709959 

R2 -0.7948115295317 0.9999999772198 0.99993212473186 -0.5467027650999 -0.1396762052939 

 

5. Conclusions 

Sun power generation is perhaps one of the most popular 

renewable power resources. For instance, it is projected to 

produce 48% of the energy demand in the United States by 

2050 [36]. Additionally, as a result of capacity expansions 

by Japan, India, US, Germany, and China, it is predicted 

that the world's solar photovoltaic capacity would increase 

up to 1582.9 GW in 2030 [37]. 

In this study, accuracy of five machine learning methods 

in predicting the power output of 350W solar panels are 

compared using thirteen electrical properties. The empirical 

results on machine learning algorithms provide several 

insights for decision-makers. First, it surveys the solar panel 

brands providing 350W energy output and collects their 

values for a comprehensive list of electrical properties. 

Second, it provides a comprehensive model of output 

prediction providing an accurate comparison of several 

methods. Five different models are test using machine 

learning algorithms and their accuracy levels along with 

error terms are presented. Decision-makers might use our 

framework to help businesses on investment decisions and 

find the best combination of system components to design 

their solar systems. 

There are inherent limitations in our study mainly due to 

the availability of data. Other factors such as price and 

physical properties can be added to the model in the future, 

when data become available for all the brands. Another 

venue for future research is to devise a system approach by 

applying the prediction algorithms for various components 

of the renewable energy systems. 
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