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Predicting the remaining useful life (RUL) of rolling bearings can provide guidance and 

reference for effective maintenance of rolling bearings in advance to ensure the regular 

operation of the machine. Therefore, maintaining bearings’ secure and reliable work is of 

great significance. Toward this end, this paper presents a RUL prediction model based on a 

convolutional neural network (CNN) and bidirectional long short-term memory (BiLSTM) 

hybrid neural network, combined with the Wiener process. This method has two 

components: extraction of vibration signal features based on the CNN-BiLSTM model and 

RUL prediction of bearings using the Wiener process. Since the technique of constructing 

feature engineering after dimensionality reduction of the time-frequency features of the 

bearing may lose important signal information, thus, this paper tries to use the vibration 

acceleration signal of the bearing as the input feature and then use CNN and BiLSTM to 

build the bearing degradation model. Health index construction by the advantages of CNN 

for feature extraction and BiLSTM for processing sequence data. Considering the 

uncertainty of the bearing degradation process, finally, the Wiener process is used to deduce 

the probability density function (PDF) for predicting RUL to predict the RUL of the 

constructed health index model. The PHM 2012 bearing datasets confirm the validity and 

superiority of the presented method in this study. 

 

1. Introduction 

Rolling bearings are one of the most usual and indispensable 

parts of machinery and equipment. The degree of safety and 

reliability of machinery and equipment will be directly 

influenced by the bearings' health status [1,2]. For example, 

in the case of electric motors, about 40% to 50% of motor 

failures are caused by rolling bearings damage [3]. 

Mechanical failures reduce the productivity of enterprises 

and even endanger the personal safety of employees. As an 

introductory section of prognostics and health management 
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(PHM), RUL has been widely concerned and applied to 

decrease the failure probability and ensure the safety 

equipment service. Rolling bearings RUL aims to analyze 

and predict failure time using information such as bearings 

monitoring signals and working conditions environment. 

Based on RUL, it is possible to determine the optimal timing 

of maintenance of the equipment and reduce the cost of use 

[4]. 

Research on bearings RUL is currently divided into two 

main approaches: mechanistic modeling and data-driven. 

The mechanical modeling approach is mainly based on the 
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physical structure of the bearing to model the degradation of 

the equipment to predict the remaining life. The mechanical 

modeling approach needs a deep understanding of the 

bearing’s structure, while the mechanism of rolling bearings 

has a certain complexity. Therefore, the approach requires a 

lot of expertise and assumptions, which leads to complex and 

costly modeling [5-7]. The data-driven approach focuses on 

predicting the remaining useful life of a bearing by fitting 

data on key characteristics that reflect the bearing's state of 

degradation using intelligent algorithms [8-10]. With the 

development of artificial intelligence technology, data-

driven methods have become the prevailing approach for 

RUL prediction in recent years. Further, data-driven methods 

can be classified into statistical theory methods and methods 

based on artificial intelligence [11]. Typical statistical theory 

methods include methods based on Wiener process [12,13], 

methods based on Gamma process [14,15], methods based 

on Markov process [16,17], etc. The main methods based on 

artificial intelligence are methods based on support vector 

machines (SVM) and methods based on neural networks 

(NN), etc. Hasanipanah et al. [18] proposed a particle swarm 

optimization (PSO) and support vector regression (SVR) 

hybrid model algorithm for Air-overpressure (AOp) 

prediction. Liu et al. [19] predicted the RUL of rolling 

bearings by continuous type hidden Markov model (HMM) 

and PSO-SVM. Zhang et al. [20] used a full CNN to train a 

RUL prediction model. Han et al. [7] used BiLSTM to build 

a rolling bearing degradation model for bearing RUL 

prediction. Zhu et al. [21] proposed a deep feature learning 

method to predict bearings RUL, which through time-

frequency representation (TFR) and multiscale 

convolutional neural network (MSCNN), compared with 

traditional CNN, MSCNN can learn more significant 

features, thereby improving the accuracy of prediction. 

Zheng et al. [22] stacked multilayer LSTMs to build RUL 

prediction models, the method addressed the problem of 

long-term dependence in Recurrent Neural Networks. 

Although the above-mentioned data-driven techniques in 

the literature have yielded promising results in the 

application of RUL prediction for mechanical equipment, 

they generally have the following limitations: 1) The above-

mentioned bearing life prediction methods usually require 

human manual extraction of time domain, frequency domain 

and statistical features [23-25], then screening and fusion, 

and finally regression prediction by machine learning, etc. In 

this process, the operation of extracting features is tedious 

and requires a lot of effort from researchers, and even 

important information may be lost. 2) For the complex and 

huge data, it is difficult for a single model structure to extract 

complex features sincerely [26]. 3) A single deep learning 

approach has difficulties deriving probability distribution 

functions that embody the uncertainty features of the 

remaining useful life. In view of the problems mentioned 

above, this article implements a combination of a statistical 

data-driven method and an approach based on deep learning 

to achieve RUL prediction for bearings. 

In CNN networks, although CNN has powerful feature 

extraction capability, CNN cannot fully extract temporal 

features because the length of the convolutional kernel of 

CNN is fixed [27]. And because the input information flows 

in one direction, CNN cannot characterize the before-and-

after correlation of degraded states [28]. In LSTM networks, 

although LSTM is suitable for processing time series [29], 

however, ordinary LSTM merely seizes the temporal 

dependence of signal in a sole temporal direction [30], which 

leads to room for improvement in prediction accuracy. A 

RUL prediction method by CNN and BiLSTM is presented 

using the raw vibration signal of the bearing as the input for 

RUL prediction. In bearing degeneration, the collected 

vibration signals are time-dependent, while they belong to 

time series data so that the BiLSTM can be used for RUL 

prediction. BiLSTM consists of both forward and backward 

LSTMs. BiLSTM can obtain contextual semantic 

information better than LSTM, so the advantage of 

processing time-series data by BiLSTM is used to input the 

spatial features extracted by CNN into the BiLSTM network 

further to extract temporal features for the construction of the 

health index. The CNN-BiLSTM model can eliminate the 

steps of feature extraction, screening, and fusion in 

traditional methods by taking advantage of its automatic 

extraction of temporal and spatial features. Premeditating 

that the health index degradation procedure is non-

monotonic. At the same time, the Wiener process can 

characterize the non-monotonic degradation procedure. 

Therefore, we finally use the Wiener process to predict the 

RUL of the constructed health index. The Bayesian method 

is employed to assess the unknown parameters of the Wiener 

process. 

Due to the mathematical properties of the Wiener process 

to characterize non-monotonic degradation processes, it is 

widely used in reliability assessment and RUL analysis of 

mechanical products [31]. Wang [32] studied the modeling 

of degradation data by a non-simultaneous Wiener process 

and proposed a pseudo-likelihood approach to model 

parameters estimation. Joseph and Yu [33] used the Wiener 

process to model the reliability of window wiper switches 

and develop reliability improvement strategies. Pan et al. 

[34] used the Wiener process model with truncated normal 

distribution to characterize the degradation process of the 

system. The analytical expressions for the PDF and the 

reliability function were derived. Wang and Feng [35] 

proposed a state-space model based on the Wiener process 

to describe the degradation process of lithium-ion batteries; 

the maximum likelihood estimation and unscented particle 

filter algorithm are employed for parameters estimation. Cai 

et al. [36] integrated the current and historical degradation 

data by the Wiener process for the RUL re-prediction for the 

subsea Christmas tree system. Zhang et al. [37] presented a 

review of the research and application of the Wiener process 

in modeling degradation data and RUL prediction. 

The main contributions of this work are summarized as 

follows 

(1) Contrast the health index with the traditional manual 

extraction of features from the vibration signal's time 

domain, frequency domain, and time-frequency domain. The 

CNN-BiLSTM prediction model constructed in this paper 

automatically extracts deep representative features in space 

and time from the original vibration signals of the bearings, 

without the need for manual feature extraction and selection. 

(2) Unlike most prediction methods based on artificial 

intelligence, this paper uses the Wiener process to 

characterize the non-monotonic degradation process to 
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portray the non-linear health index of the bearing, and 

calculates the first-hitting-time to reach the distribution of 

the bearing’s RUL. Furthermore, the confidence interval of 

the bearing’s RUL is constructed to quantify the uncertainty 

in the bearing degradation process. 

The remaining parts are organized as follows: Section 2 

presents CNN and BiLSTM. Section 3 describes in detail the 

process of the proposed method for RUL prediction. Section 

4 describes how the Wiener process can be used for bearing 

RUL prediction. Section 5 validates the proposed method 

through the bearing degradation experiment. And finally, 

conclusions are drawn, and future perspectives are presented 

in Section 6. 

2. Basic Theory of Neural Networks 

2.1. CNN 

CNN is an effective feedforward neural network for 

feature extraction and pattern recognition first proposed by 

Lecun and Bengio [38] in deep learning research. CNN 

models have powerful image feature extraction capabilities, 

which use a few parameters to catch the spatial features of 

the input. Then the captured features are combined to form 

high-level data features, which are eventually fed into the 

fully-connected layers to achieve prediction. Usually, CNN 

consists of the input layer, convolution layer, pooling layer 

(subsampled layer), and fully connected layer. CNN 

structure is demonstrated in Figure 1. 

2.1.1 Convolution Layer 

The role of the convolution layer is to perform the 

convolution operation on the local region of the input data 

and the convolution kernel. Assuming that the input to the 

CNN model is 𝑋  the output of the convolution layer is 

calculated as Eq. (1) 

𝐶_𝑛 = 𝜎(𝑊_𝑛 ⊗ 𝑋 + 𝑏_𝑛 ) (1) 

where 𝑛 is the number of convolution kernels, 𝐶𝑛 denotes the 

𝑛th feature map of the convolution layer output, 𝜎(∙) is the 

activation function, 𝑊𝑛 represents the convolution kernel, 𝑏𝑛 

represents the bias term, and ⊗ is the convolution operator. 

 

Figure 1. The typical CNN structure 

 

2.1.2 Pooling Layer 

The role of the pooling layer is to diminish the size of the 

feature maps and the computational complexity. Pooling 

layer can keep the most required information while reducing 

the dimensionality of features. Common pooling operations 

are average pooling and maximum pooling. In this paper, we 

use the more widely used maximum pooling, which is 

denoted as Eq. (2) 

𝑃𝑛 = 𝑚𝑎𝑥𝐶𝑛 (2) 

where 𝑃𝑛 is the output of the pooling layer, 𝐶𝑛 denotes the 

input for the pooling layer. 

 

2.1.3 Fully Connected Layer 

Each output neuron of the fully connected layer (FC 

layer) is connected with the input node. The input feature is 

combined with the FC layer, and then the activation function 

is used to get the predicted value. The FC layer is expressed 

as Eq. (3) 

𝐹 = 𝑓(𝑊𝑓𝑐𝑋𝑓𝑐 + 𝑏𝑓𝑐) (3) 

where 𝑋𝑓𝑐  is the input feature maps of FC layer, 𝑊𝑓𝑐 

represents the weights of fully connected layer, and 𝑏𝑓𝑐 

denotes bias terms of FC layer. 

2.2. BiLSTM 

In CNN, since the information flows only in one 

direction, the CNN only considers the input of this time, 

while ignoring the previously degraded information during 

the computation. Consequently, CNN cannot characterize 

the before-and-after correlation of degraded states [39]. 

LSTM is a neural network with memory function, a variant 

of recurrent neural network (RNN). LSTM has excellent 

capability in the temporal data processing. LSTM also is 

widely used in natural language processing (NLP) and other 

fields. LSTM uses input gate, output gate, and forget gate to 

achieve control of the information [40]. A single LSTM 

neuron is shown in Figure 2. 

 
Figure 2. Structure of LSTM neuron 
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In Figure 2, 𝜎 denotes the activation function. LSTM 

adds a new cell state and three gate structures based on RNN 

[41]. The cell state is responsible for storing information. 

The activation function tanh and dot multiplication 

operations together form the gate structure. 

The ordinary LSTM merely seizes the signal’s temporal 

dependence in a single temporal direction. This paper 

integrates a bidirectional recurrent network architecture with 

LSTM into BiLSTM, which can learn hidden features in 

forwarding and backward directions [29]. BiLSTM is similar 

to the LSTM computational process. BiLSTM adds the 

inverse operation to LSTM to process the sequence in both 

forward and backward directions, and its network expansion 

diagram is shown in Figure 3. First, BiLSTM inverts the 

input sequence, then stacks the forward and backward LSTM 

in the same way as LSTM, and finally outputs them. Since 

the evolution of bearings failure evolves over time, there is a 

robust correlation between its features before and after, and 

the BiLSTM model can catch the past and future information 

at the same time, so BiLSTM is better at extracting the 

degraded features of bearings, thereby improving the 

accuracy of prediction. 

 
Figure 3. BiLSTM network expansion diagram 

3. Rolling Bearings RUL Prediction Method 

Figure 4 displays the process of rolling bearings RUL 

prediction method. The specific steps are as follows:  

Step 1: Data acquisition. Acquisition of historical 

vibration signals from a large number of rolling bearings. 

Step 2: Dividing the data set into a training set for 

training and a test set for testing, then normalizing the 

training set and the test set. The normalized vibration signal 

is used as the input of the CNN-BiLSTM model for deep 

feature extraction, and the degradation value is used as the 

label for the output of the model. The degradation value is a 

ratio. Assuming a specific bearing has a life of 22,000s, when 

the bearing operates to 11,000s, the degradation value is 

equal to 0.5. 

Step 3: Set the CNN and BiLSTM network's network 

parameters. The CNN-BiLSTM model is used to extract 

spatial and temporal features from the input signal, and the 

output is performed through a FC layer to achieve the 

construction of health index based on the lifetime percentage. 

The network structure of the CNN-BiLTSM model is shown 

in Figure. 5. The network has 15 layers, including one input 

layer, three 1D convolutional layers, three maximum pooling 

layers for spatial feature extraction, two BiLSTM layers for 

temporal feature extraction, one Flatten layer for spreading 

operation, and one Dropout layer for overfitting prevention, 

and four fully connected layers for output.  

Step 4: Test set validation. The test set data are input 

into the established model to obtain predicted degradation 

values and plot bearing degradation curve. 

Step 5: According to the performance degradation trend 

of rolling bearings, the Wiener process predicts the RUL of 

rolling bearings. 

 
Figure 4. The process of rolling bearings RUL prediction method 
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Figure 5. CNN-BiLTSM model network structure 

 

 

4. Rolling Bearings RUL Prediction Based on Wiener 

Process 

4.1. The Degradation Process 

The advantage of the Wiener process over the Gamma 

process and the inverse Gaussian process is the ability to 

model non-monotonic degenerate processes. The Wiener 

process {𝑌(𝑡) ; 𝑡 > 0} could define as Eq. (4) 

𝑓(Δ𝑌(𝑡)|𝜇, 𝜎)

=
1

𝜎√2𝜋Δ𝜏(𝑡)
𝑒𝑥𝑝 (−

(Δ𝑌(𝑡) − 𝜇Δ𝜏(𝑡))
2

2𝜎2Δ𝜏(𝑡)
) 

(4) 

Supposing that the performance degradation process of 

products obeys the Wiener process and is the failure 

threshold, the product's life time can be defined as the time 

of first reaching C: 𝑇 = 𝑖𝑛𝑓{𝑡 : 𝑌 (𝑡) ≥ 𝐶}. The life time 𝑇 

obeys the IG distribution: 𝑇 ∼ 𝐼𝐺(𝐶/𝜇, 𝐶2/𝜎2). The PDF 

and the CDF of 𝑇 are Eqs. (5) and (6)  

𝑓(𝑡|𝜇, 𝜎) =
𝐶

√2𝜋𝑡𝜎𝑡
𝑒𝑥𝑝 (−

(𝜇𝑡 − 𝐶)2

2𝜎2𝑡
) (5) 

𝐹(𝑡|𝜇, 𝜎) = Φ (
𝜇𝑡 − 𝐶

𝜎√𝑡
)

+ 𝑒𝑥𝑝 (
2𝜇𝐶

𝜎2
) Φ (

−𝐶 − 𝜇𝑡

𝜎√𝑡
) 

(6) 

The remaining useful life 𝑇𝑘  at any time 𝑇0  can be 

defined as: 𝑇 = 𝑖𝑛𝑓{𝑡 : 𝑌 (𝑇0 + 𝑇𝑘) ≥ 𝐶}. Define 𝐿0  as the 

actual cumulative observed degradation value of the product's 

performance up to the time 𝑇0. The PDF and CDF of the RUL 

𝑇0 are Eqs. (7) and (8) 

𝑓(𝑡𝑘|𝜇, 𝜎) =
𝐶 − 𝐿0

√2𝜋𝑡𝑘𝜎𝑡𝑘

𝑒𝑥𝑝 (−
(𝜇𝑡𝑘 − 𝐶 + 𝐿0)2

2𝜎2𝑡𝑘

) (7) 

𝐹(𝑡𝑘|𝜇, 𝜎)

= Φ (
𝜇𝑡𝑘 − 𝐶 + 𝐿0

𝜎√𝑡𝑘

)

+ 𝑒𝑥𝑝 (
2𝜇(𝐶 − 𝐿0)

𝜎2
) Φ (

−𝐶 − 𝜇𝑡𝑘 + 𝐿0

𝜎√𝑡𝑘

) 

(8) 

4.2. Parameter Estimation 

When the Wiener process is used to characterize the 

degradation process, the degradation increment Δ𝑑𝑖𝑗 is 

normally distributed: Δ𝑑𝑖𝑗 ~ 𝑁 (𝜇Δ𝑡𝑖𝑗 , 𝜎2Δ𝑡𝑖𝑗)  and Δ𝑡𝑖𝑗 =

𝑡𝑖𝑗 − 𝑡𝑖,𝑗−1 . The sample number is denoted by 𝑖  and the 

discrete observation times is characterized by 𝑗 . The 

likelihood function of the degradation process can be 

expressed as Eq. (9) 

𝐿(𝐷|𝜇, 𝜎) = ∏ ∏ 𝑓(Δ𝑑𝑖𝑗|𝜇, 𝜎)

𝑀

𝑗=2

𝑁

𝑖=1

= ∏ ∏
1

𝜎√2𝜋Δ𝑡𝑖𝑗

𝑒𝑥𝑝 (−
(Δ𝑑𝑖𝑗 − 𝜇Δ𝑡𝑖𝑗)

2

2𝜎2Δ𝑡𝑖𝑗

)

𝑀

𝑗=2

𝑁

𝑖=1

 

(9) 

where, 𝑓(∙) is the PDF of the normal distribution. 

Assuming that the joint prior distribution of the model 

is 𝜋(𝜃)=π(μ,σ)  , the joint posterior distribution of the 

parameters to be estimated in the model via Bayesian method 

can be expressed as Eq. (10) 

𝑝(𝜇, 𝜎|𝐷) ∝ 𝜋(𝜃)𝐿(𝐷|𝜇, 𝜎) = 

𝜋(𝜇, 𝜎) ∏ ∏
1

𝜎√2𝜋Δ𝑡𝑖𝑗

𝑒𝑥𝑝 (−
(Δ𝑑𝑖𝑗 − 𝜇Δ𝑡𝑖𝑗)

2

2𝜎2Δ𝑡𝑖𝑗
)

𝑀

𝑗=2

𝑁

𝑖=1

 
(10) 

 

5. Experiment Verification 

5.1. Description of Data 

The data set for this experiment comes from the IEEE 

2012 PHM Data Challenge [42], and it is measured by the 

PRONOSTIA experimental platform at FEMTO-ST 

Institution in France. The bearing life degradation 

experimental platform is shown in Figure 6. 

 

 

Figure 6. PRONOSTIA experimental platform 

 

The dataset includes vibration signals for the full life 

cycle of 17 rolling bearings under three different operating 
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conditions, as shown in Table 1. The data is collected every 

10s, the sampling frequency is 25.6kHz, and one sampling 

time is 0.1s, so 2560 vibration accelerations can be obtained 

for each acquisition, as shown in Figure 7. Bearing failure is 

considered when the measured value of vibration 

acceleration reaches a predetermined threshold value. The 

dataset contains vibration acceleration signals in both 

horizontal and vertical directions. It is compared with the 

vertical vibration signal, and the horizontal vibration signal 

has more useful information [43], so only the horizontal 

vibration signal is used for the experiments in this paper. The 

bearing data named Bearing1_1 and Bearing1_2 under 

working condition 1 are chosen as the training set for the 

experiment to simulate the extreme lack of training data, 

containing 3674 sampling points. The test set is selected 

from the bearing data named Bearing1_3, which contains 

2375 sampling points. For each experimental sample (𝑋𝑖 , 𝑌𝑖), 

𝑋𝑖 is the value of the 2560th vibration acceleration acquired 

for the 𝑖 th time. 𝑌𝑖  is the degree of degradation 

corresponding to this acquisition that the ratio between the 

current moment and the failure moment. 

 

 
Figure 7. Vibration signal of the first sampling point in 

Bearing1_1 

Table 1. Detailed information on working conditions 

Working condition Rotating speed(rpm) Load 

Working condition1 1800 4000 

Working condition2 1650 4200 

Working condition3 1500 5000 

5.2. CNN-BiLSTM Model Parameter Setting 

The input data of this experiment is a two-dimensional 

vibration signal of (2560, 1), and 2560 samples are selected 

each time for the experiment. The model uses the adam 

algorithm as the training parameter of the optimization 

algorithm, mean square error (MSE) is chosen as loss 

function, Rectified Linear Unit (ReLU) is used as the 

activation function. The activation function of the final output 

layer of the network uses the sigmoid activation function to 

control the final output result between [0, 1]. The overall 

structure of the model is shown in Figure 5, and the detailed 

parameters configuration of CNN-BiLSTM model network 

structure are summarized in Table 2. To avoid overfitting, the 

Dropout technique is used during the training process, and 

each experiment is conducted 50 epochs. MSE is used to 

evaluate the training effect, can well reflect the actual 

situation of the predicted value error, expressed as Eq. (11)  

𝑀𝑆𝐸 =
1

𝑁
∑ (𝑦𝑡 − 𝑦𝑡

∧
)

𝑁

𝑡=1

2

 (11) 

where 𝑦𝑡 and 𝑦𝑡

^
 are the true and predicted values of bearing 

degradation, respectively. 𝑁 is the total number of samples. 

5.3. Experimental results and analysis 

The CNN-BiLSTM model was fitted on the test set to 

obtain the fitting results of the actual degradation values and 

the predicted degradation values, and the results are shown 

in Figure 8. 
 

Table 2. Parameters configuration of model network structure 

Layer  size Number Activation function 

Conv1 64×1 16 Relu 

Pooling1 2×1 — — 

Conv2 3×1 32 Relu 

Pooling2 2×1 — — 

Conv3 3×1 64 Relu 

Pooling3 2×1 — — 

BiLSTM — 100 tanh 

BiLSTM — 50 tanh 

Dense1 — 128 Relu 

Dense2 — 64 Relu 

Dense3 — 32 Relu 

Dense4 — 1 sigmoid 
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Figure 8. Fitting results on the test set 

 

In Figure 8, the horizontal coordinate indicates the 

running time of Bearing1_3, the vertical coordinate 

indicates the health index of Bearing1_3, the actual 

degradation value is denoted by a slash, and the predicted 

degradation value is represented by a curve. As is shown in 

Figure 8, the CNN-BiLSTM model can better fit the 

degradation degree of the bearing, but the prediction results 

of some adjacent time points differ significantly. The 

prediction accuracy changes significantly with the local 

fluctuations of the samples, so the moving average (MA) 

method is used to do smoothing on the prediction results to 

reduce the impact of oscillations [44], and the moving 

window size is set to 20. The results after MA is shown in 

Figure 9. 

 

 
Figure 9. After MA result on the test set 

 

From Figure 9, we can see the predicted value curve 

after noise reduction is closer to the actual remaining life 

line. To further validate the model effects, the experimental 

results are compared with those of four network models, 

SVR, MLP, CNN, BiLSTM, and CNN-LSTM, using the 

same experimental data and setting the same network 

parameters. For the purpose of quantitatively evaluating the 

prediction effect of the model, root mean square error 

(RMSE), mean absolute error (MAE), and correlation index 

(R2) were used as an evaluation index for each of the three 

models, can be expressed as Eqs. (12-14) 

𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸 (12) 

𝑀𝐴𝐸 =
1

𝑁
∑ |𝑦𝑡 − 𝑦𝑡

^
|

𝑁

𝑡=1

 (13) 

𝑅2 = 1 −
∑ (𝑦𝑡 − 𝑦𝑡

^
)

2
𝑁
𝑡=1

∑ (𝑦𝑡 − 𝑦𝑡

_
)2𝑁

𝑡=1

 (14) 

where 𝑦𝑡

_
 is the average value of bearing degradation. 

Each model is trained five times to take the average as 

the prediction result, and the final comparison of the 

validation outcome of the five models on the test set is 

shown in Table 3. 
 

Table 3. Model effect comparison 

Network model Average 

RMSE 

Average 

MAE 

Average R2 

SVR 0.194 0.155 — 

MLP 0.157 0.115 — 

CNN 0.072 0.061 89.05% 

BiLSTM 0.093 0.079 81.86% 

CNN-LSTM 0.067 0.056 90.48% 

Proposed 

method 

0.061 0.051 92.13% 

 

In Table 3, As can be seen, the RMSE and MAE of the 

proposed method are the smallest, and R2 is the largest on 

the test set of the experiment. The proposed method reduced 

the average RMSE by 9.0% and the average MAE by 8.9% 

contrasted with the CNN-LSTM model, reduced the 

average RMSE by 15.3% and the average MAE by 16.4% 

contrasted with the CNN model, and reduced the average 

RMSE by 68.6% and the average MAE by 67.1% than the 

SVR model.This result shows that: 1) traditional machine 

learning methods have a relatively large gap in prediction 

accuracy compared with deep learning methods, which 

proves the superiority of deep learning methods. 2) Coupled 

models have better prediction results compared with single 

models. 3) The CNN-BiLSTM model can adequately 

extract deep features in the time and space of vibration 

signals, while the BiLSTM model is more effective and 

superior than the LSTM model. (4) The effectiveness and 

superiority of the CNN-BiLSTM model compared with 

other models are verified, and the CNN-BiLSTM model is 

more appropriate for the RUL prediction of bearings. 

Representation of the CNN-BiLSTM model's 

predicted degradation value through health index, the health 

index of Bearing1_3 has substituted into the Wiener process 

to analyze the RUL distributions, and the Bayesian method 

is used for parameters estimation. Since the illustrative 

example used in this paper has no prior information, the 

uninformative prior distribution is used to avoid subjective 

factors’ effect on the reliability results. The uninformative 

prior distribution of the Wiener process parameters is 

shown as: 𝜇 ∼ 𝑈(0,1), 𝜎 ∼ 𝑈(0,1). The 20000 samples of 

model parameters of joint posterior distribution are 

generated by the Markov chain Monte Carlo method. 

The results for parameter estimation based on the 

degradation data up to 21000s are given in Table 4. 

The PDFs of posterior distributions of the Wiener 

process model parameters are shown in Figure 10. 
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Table 4. Statistical summarization of parameters estimation 

 Mean Standard deviation 
Confidence interval 

2.5% 97.5% 

𝜇 0.00102 0.0007221 0.00004691 0.002701 

𝜎 0.04922 0.0007652 0.004775 0.05074 

 

 

Figure 10. The PDFs of posterior distributions of model parameters: 𝜇 and 𝜎 

The results of the RUL prediction of Bearing 1_3 at 

19000 and 21000 time points are summarized in Figure 11. 

As shown in Figure 11, it can be observed that as the 

number of observations grows, the predicted RUL is getting 

closer to the true RUL. These results can also validate the 

effectiveness of the proposed method in this paper. 

 

Figure 11. Results of RUL prediction for Bearing 1_3. (a) At time 𝑡𝑝1 = 19000𝑠. (b) At time 𝑡𝑝2 = 21000𝑠 

 

6. Conclusion 

In this paper, we propose a deep learning network 

model for rolling bearings RUL prediction: CNN-BiLSTM 

model. For rolling bearings, the vibration level acceleration 

signal in the bearings dataset is first used as input to build a 

CNN-BiLSTM network model to fully extract the deep 

features of the vibration signal in time and space. The 

established model is used to predict the degradation value 

of test set bearings. Then according to the relationship 

between degradation value and RUL, the Wiener process is 

used to obtain the RUL of the corresponding bearing. 

Finally, the proposed model was experimentally validated 

on the PHM2012 bearing degradation dataset and compared 

with some existing network models. The experimental 

results show that the rolling bearings degradation model 

based on CNN-BiLSTM can better fit the degradation curve 

of the bearing, and the Wiener process can accurately 

predict the RUL of bearings. It proves the effectiveness of 

the method. 

In the future, since there is a large amount of noise in 

the original vibration signal and the data fluctuation range 

is large, the noise reduction process will be carried out in 

future work. And the proposed method in this paper is 

carried out in a single working condition, while there are a 

large number of variable loads working conditions in 

industrial production, so the subsequent research on RUL 

prediction under multiple working conditions will be 

carried out. 
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