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In recent years, Deep Reinforcement Learning (DRL) has become an increasingly popular 

method of creating effective intelligence agents. DRL agents have proven to be successful, 

especially in the realm of games, but we as humans have difficulty understanding DRL 

agents' behavior due to their complex structures. Uncovering game-playing DRL agents' 

priorities and action patterns can reap valuable insights into how humans can effectively 

manage real-world game-like environments. One genre of games that might be of particular 

interest would be Real-Time Strategy (RTS) games, which involve many real-world aspects 

such as simultaneous management of multiple units and real-time decision making. In this 

paper, we introduce the method of using Decision Tree Classifiers to better understand and 

visualize the behaviors of DRL agents in the RTS environment, gym-µRTS. 

 

1. Introduction 

As Deep Reinforcement Learning (DRL) methods have 

become an area of intense study in recent years, more and 

more effective DRL agents have been birthed. The realm of 

games in particular has been well-populated with DRL 

agents: a notable example would be AlphaGo, the first 

computer program to defeat a professional Human Go player 

[1].  

Although these DRL agents have proven to be effective, 

human researchers have had difficulty uncovering their 

priorities and strategies due to their complex structures as 

Neural Networks. DRL agents have appropriately been 

dubbed “black boxes" due to the difficulty of being able to 

understand their inner workings. Explainable Reinforcement 

Learning is an area of study that aims to tackle this issue by 

studying the behaviors and action patterns of DRL agents. 

Doing so may yield fruitful insights into newer and more 

effective strategies for humans to adopt.  
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In this paper, we present a potential method in studying 

DRL agents in the Real-time Strategy (RTS) game µRTS 

through its Python wrapper, gym -µRTS [2]. Gym-µRTS is 

an environment consisting of a 16 × 16 grid and incorporates 

the two key aspects of an RTS game: 1) the simultaneous 

management of multiple units and 2) real-time decision 

making. Figure 1 displays a sample gym-µRTS game state.  

The agent we study in this paper is COAC, the 2020 

µRTS AI Competition champion microRTS AI Competition 

[3]. We look to uncover COAC's strategies as it plays µRTS, 

as RTS games' features of simultaneous management and 

real-time decision making are crucial in real-world 

situations. The ability to model how world- champion DRL 

agents play µRTS may lead to strategies applicable to the 

real world, such as in the controlling of drones. 
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Figure 1. Sample µRTS Game State 

 

2. Related Work 

Many methods have been previously proposed to 

advance the ability to understand DRL agents [4] such as: 

• Programmatically Interpretable Reinforcement 

Learning: The policies of DRL agents are recreated 

but in a high-level human-readable programming 

language [5]. 

• Hierarchical and Interpretable Skill Acquisition: 

Agents are designed to create higher-level policies 

that consist of lower-level actions; the higher-level 

policies are described by a human instruction [6]. 

• Model U-Trees: Linear Model U-Trees (LMUTs) are 

essentially the same as Continuous U-Trees, but each 

leaf node represents a linear model instead of a 

constant; LMUTs are able to efficiently represent 

continuous functions, which allow them to effectively 

imitate the Q functions of DRL models [7]. 

• Representation via Causal Graphs: Causal graphs are 

directed acyclic graphs constructed using regression 

learners and help explain why a certain action are 

taken by considering the counterfactual [8]. 

3. Methods 

In order to model how COAC played µRTS, we trained 

a Decision Tree Classifier (DTC) for each cell on the 16×16 

game board. Given the state of the game board, each DTC 

would then predict what the cell's action would be. 

3.1. Decision Tree Classifiers 

Throughout this project, we choose to use DTCs to 

predict a cell's action given the state of the board. DTCs are 

full binary trees where each inner node has an inequality 

condition based on a single feature of the input data: if the 

condition is true, the train of logic falls to the left child, and 

the train of logic falls to the right otherwise. 

Each leaf node represents a prediction. 

DTCs are advantageous because they have a structure that 

is easy for humans to understand, the process of following 

their logic is rather simple. DTCs can also be easily 

visualized for human interpretation, as shown in Figure 4. 

The DTCs we used, as provided by scikit-learn [9], can also 

be easily limited in size to prevent overstating and too 

complex of a model. 

However, a downside of DTCs is their volatility. The 

structures of DTCs can be completely altered due to a few 

outlier data points, which is certainly not favorable. 

3.2. Collecting and Reshaping Data Points 

While COAC played against various other agents, we 

collected, for every action, 1) the current game state (16 × 

16×27) and 2) an action array detailing the action taken and 

at which cell (1×8). A total of 59,335 data points were 

collected, with Figure 2 displaying a heatmap of the number 

of data points collected for each cell. 

Each cell in a game state was described by a length-27 

array based on the formatting detailed in Table 1. 

So, for example, a cell containing a moving worker 

owned by Player 1 that has Hit Point and 2 Resources would 

be described as the concatenation of its one-hot encoded 

features [2]: [0, 1, 0, 0, 0] [0, 0, 1, 0, 0] [0, 1, 0] 

 [0, 0, 0, 0, 1, 0, 0, 0] [0, 1, 0, 0, 0, 0] → [0, 1, 0, 0, 0, 

0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0]. 

Although one-hot encodings are ideal for DTCs, there 

was no need for the Hit Points and Resources features to be 

one-hot encoded since - for these two particular features - 

the notion of comparing via inequalities is reasonable. 
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Additionally, compressing these one-hot encodings 

eliminates extraneous features which may have resulted in 

extra layers for our DTCs. Thus, our one-hot encoded Hit 

Points and Resources were adjusted into single integers, 

yielding a new cell feature array of length 19. 

As for the action arrays, as detailed in Figure 2, we only 

care for the Source Unit and Action Type features for now, 

so our action arrays were shortened to be of length 2. 

 
Figure 2. # of Data Points per Cell 

 
 

Table 1. Cell Observation Features 

Observation Features Planes Description 

Hit Points 5 0, 1, 2, 3, ≥ 4 

Resources 5 0, 1, 2, 3, ≥4 

Owner 3 -, player 1, player 2 

Unit Types 8 -, resources, base, barrack worker, light, heavy, ranged 

Current Action 6 -, move, harvest, return, produce, attack 

 

3.3. DTC Training 

With all of the data now collected, the next step was to 

train our DTCs for each cell. This was done by first 

assigning each data point to its appropriate cell, then 

hypertuning each cell's DTC's max depth from 3 to 15 using 

a grid search cross validation. 

 

4. Results and Discussion 

Figure 3 displays each of our cells' DTCs' test 

accuracies. Although our test accuracies appear to be 

relatively low for the most part, there is a clear special 

relation between the number of data points collected (Figure 

2) and the DTC test accuracy (Figure 3) along the grid's 

diagonal. Thus, we are hopeful that the collection of more 

data points especially in the areas that seem to be less 

populated-will lend itself to higher overall test accuracies. 

 
 

 Table 2. Action Components 

Action Components Range Description 

Source Unit [0, h × w - 1] the location of the unit selected to perform an action 

Action Type   [0, 5]  NOOP, move, harvest, return, produce, attack 

Move Parameter   [0, 3]  north, east, south, west 

Harvest Parameter  [0, 3] north, east, south, west 

Return Parameter  [0, 3] north, east, south, west 

Produce Direction  [0, 3] north, east, south, west 

Parameter Produce Type  [0, 6]  resource, base, barrack, worker, light, heavy ranged 

Relative Attack Position  [0, 𝑎𝑟
2 - 1] the relative location of the Position unit that will be attacked 
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Figure 3. Test Accuracy per Cell 

 

4.1. Sample DTC 

Figure 4 displays the DTC used for the cell in row 2, 

column 2, which had 1,846 data points collected (the most 

of any cell) and a test accuracy of 93.5%. 

Looking at this tree, it's very easy to follow the model's 

decision process: if the condition at the top of each box is 

true, the train of logic falls to the left, and if it's false, the 

train goes to the right. Once the train of logic reaches a leaf 

node, a prediction is made. This sample DTC's visual 

simplicity and straightforwardness are precisely why we 

propose the use of DTCs in our future pursuits of modelling 

µRTS agents' decision-making processes. 

 

 
Figure 4. Decision Tree Classifier for Cell (2, 2) 
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5. Conclusion and Future Work 

If it is not already apparent, this research project is still 

young, and there is a lot of work to be done. However, these 

preliminary results are enough to get us excited and assured 

that we are on the right track. As of right now, our 

(chronological) future plans consist of: 

▪ Collecting more data from COAC. As previously stated, 

there appears to be a clear correlation between each cell's 

number of data points and its DTC's test accuracy. Thus, 

it is only natural for us to aim to collect more data points. 

However, there are more data points in certain regions 

for a reason: the game starts with COAC's agents in the 

top-left corner, and it appears that COAC tends to move 

its units along the diagonal of the board. Therefore, we 

will work towards manually placing COAC in 

uncommon situations by manipulating the game state: 

this will allow us to collect more data points from less 

popular cells. 

▪ Hard-coding rules into our DTCs. Right now, our DTCs 

do not appear to be taking a cell's unit into account. 

However, it would make sense for a DTC, for example, 

to automatically eliminate some action choices for a 

“Barrack” unit since they can only stay idle or produce. 

We aim to hard-code these decisions into the DTCs so 

that they are able to immediately make “obvious” 

choices. 

▪ Creating a GUI. Once our DTCs are all able to perform 

at a sufficient level, we will aim to create an interactive 

GUI for outsiders to easily understand how the COAC 

agent behaves, thus ultimately achieving our goal of 

creating a human-understandable model that is able to 

present how the COAC agent behaves. 
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