

COMPUTATIONAL RESEARCH PROGRESS IN APPLIED SCIENCE & ENGINEERING (CRPASE)

CRPASE: TRANSACTIONS OF INDUSTRIAL ENGINEERING

Journal homepage: http://www.crpase.com

CRPASE: Transactions of Industrial Engineering 8 (3) Article ID: 2487, 1–5, September 2022 ISSN 2423-4591

Research Article

Towards Interpretable Reinforcement Learning in Real-Time

Strategy Games

Lance Bae

Bergen County Academies, New Jersey, United States

Keywords Abstract

Explainable

Reinforcement Learning,

Real-Time Strategy

Games.

In recent years, Deep Reinforcement Learning (DRL) has become an increasingly popular

method of creating effective intelligence agents. DRL agents have proven to be successful,

especially in the realm of games, but we as humans have difficulty understanding DRL

agents' behavior due to their complex structures. Uncovering game-playing DRL agents'

priorities and action patterns can reap valuable insights into how humans can effectively

manage real-world game-like environments. One genre of games that might be of particular

interest would be Real-Time Strategy (RTS) games, which involve many real-world aspects

such as simultaneous management of multiple units and real-time decision making. In this

paper, we introduce the method of using Decision Tree Classifiers to better understand and

visualize the behaviors of DRL agents in the RTS environment, gym-µRTS.

1. Introduction

As Deep Reinforcement Learning (DRL) methods have

become an area of intense study in recent years, more and

more effective DRL agents have been birthed. The realm of

games in particular has been well-populated with DRL

agents: a notable example would be AlphaGo, the first

computer program to defeat a professional Human Go player

[1].

Although these DRL agents have proven to be effective,

human researchers have had difficulty uncovering their

priorities and strategies due to their complex structures as

Neural Networks. DRL agents have appropriately been

dubbed “black boxes" due to the difficulty of being able to

understand their inner workings. Explainable Reinforcement

Learning is an area of study that aims to tackle this issue by

studying the behaviors and action patterns of DRL agents.

Doing so may yield fruitful insights into newer and more

effective strategies for humans to adopt.

 Corresponding Author: Lance Bae

E-mail address: lance.y.bae@gmail.com, ORCID: https://orcid.org/0000-0001-7735-3435

Received: 15 August 2022; Revised: 23 August 2022; Accepted: 5 September 2022

https://doi.org/10.52547/crpase.8.3.2487

Academic Editor: Mohammad Mahdi Ahmadi

Please cite this article as: L. Bae, Towards Interpretable Reinforcement Learning in Real-Time Strategy Games, Computational Research

Progress in Applied Science & Engineering, CRPASE: Transactions of Industrial Engineering 8 (2022) 1–5, Article ID: 2487.

In this paper, we present a potential method in studying

DRL agents in the Real-time Strategy (RTS) game µRTS

through its Python wrapper, gym -µRTS [2]. Gym-µRTS is

an environment consisting of a 16 × 16 grid and incorporates

the two key aspects of an RTS game: 1) the simultaneous

management of multiple units and 2) real-time decision

making. Figure 1 displays a sample gym-µRTS game state.

The agent we study in this paper is COAC, the 2020

µRTS AI Competition champion microRTS AI Competition

[3]. We look to uncover COAC's strategies as it plays µRTS,

as RTS games' features of simultaneous management and

real-time decision making are crucial in real-world

situations. The ability to model how world- champion DRL

agents play µRTS may lead to strategies applicable to the

real world, such as in the controlling of drones.

http://www.crpase.com/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/
https://crossmark.crossref.org/dialog/?doi=10.52547/crpase.8.3.2487
https://orcid.org/0000-0001-7735-3435

Lance Bae - CRPASE: Transactions of Industrial Engineering 8 (3) Article ID: 2487, 1–5, September 2022

2

Figure 1. Sample µRTS Game State

2. Related Work

Many methods have been previously proposed to

advance the ability to understand DRL agents [4] such as:

• Programmatically Interpretable Reinforcement

Learning: The policies of DRL agents are recreated

but in a high-level human-readable programming

language [5].

• Hierarchical and Interpretable Skill Acquisition:

Agents are designed to create higher-level policies

that consist of lower-level actions; the higher-level

policies are described by a human instruction [6].

• Model U-Trees: Linear Model U-Trees (LMUTs) are

essentially the same as Continuous U-Trees, but each

leaf node represents a linear model instead of a

constant; LMUTs are able to efficiently represent

continuous functions, which allow them to effectively

imitate the Q functions of DRL models [7].

• Representation via Causal Graphs: Causal graphs are

directed acyclic graphs constructed using regression

learners and help explain why a certain action are

taken by considering the counterfactual [8].

3. Methods

In order to model how COAC played µRTS, we trained

a Decision Tree Classifier (DTC) for each cell on the 16×16

game board. Given the state of the game board, each DTC

would then predict what the cell's action would be.

3.1. Decision Tree Classifiers

Throughout this project, we choose to use DTCs to

predict a cell's action given the state of the board. DTCs are

full binary trees where each inner node has an inequality

condition based on a single feature of the input data: if the

condition is true, the train of logic falls to the left child, and

the train of logic falls to the right otherwise.

Each leaf node represents a prediction.

DTCs are advantageous because they have a structure that

is easy for humans to understand, the process of following

their logic is rather simple. DTCs can also be easily

visualized for human interpretation, as shown in Figure 4.

The DTCs we used, as provided by scikit-learn [9], can also

be easily limited in size to prevent overstating and too

complex of a model.

However, a downside of DTCs is their volatility. The

structures of DTCs can be completely altered due to a few

outlier data points, which is certainly not favorable.

3.2. Collecting and Reshaping Data Points

While COAC played against various other agents, we

collected, for every action, 1) the current game state (16 ×

16×27) and 2) an action array detailing the action taken and

at which cell (1×8). A total of 59,335 data points were

collected, with Figure 2 displaying a heatmap of the number

of data points collected for each cell.

Each cell in a game state was described by a length-27

array based on the formatting detailed in Table 1.

So, for example, a cell containing a moving worker

owned by Player 1 that has Hit Point and 2 Resources would

be described as the concatenation of its one-hot encoded

features [2]: [0, 1, 0, 0, 0] [0, 0, 1, 0, 0] [0, 1, 0]

 [0, 0, 0, 0, 1, 0, 0, 0] [0, 1, 0, 0, 0, 0] → [0, 1, 0, 0, 0,

0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0].

Although one-hot encodings are ideal for DTCs, there

was no need for the Hit Points and Resources features to be

one-hot encoded since - for these two particular features -

the notion of comparing via inequalities is reasonable.

Lance Bae - CRPASE: Transactions of Industrial Engineering 8 (3) Article ID: 2487, 1–5, September 2022

3

Additionally, compressing these one-hot encodings

eliminates extraneous features which may have resulted in

extra layers for our DTCs. Thus, our one-hot encoded Hit

Points and Resources were adjusted into single integers,

yielding a new cell feature array of length 19.

As for the action arrays, as detailed in Figure 2, we only

care for the Source Unit and Action Type features for now,

so our action arrays were shortened to be of length 2.

Figure 2. # of Data Points per Cell

Table 1. Cell Observation Features

Observation Features Planes Description

Hit Points 5 0, 1, 2, 3, ≥ 4

Resources 5 0, 1, 2, 3, ≥4

Owner 3 -, player 1, player 2

Unit Types 8 -, resources, base, barrack worker, light, heavy, ranged

Current Action 6 -, move, harvest, return, produce, attack

3.3. DTC Training

With all of the data now collected, the next step was to

train our DTCs for each cell. This was done by first

assigning each data point to its appropriate cell, then

hypertuning each cell's DTC's max depth from 3 to 15 using

a grid search cross validation.

4. Results and Discussion

Figure 3 displays each of our cells' DTCs' test

accuracies. Although our test accuracies appear to be

relatively low for the most part, there is a clear special

relation between the number of data points collected (Figure

2) and the DTC test accuracy (Figure 3) along the grid's

diagonal. Thus, we are hopeful that the collection of more

data points especially in the areas that seem to be less

populated-will lend itself to higher overall test accuracies.

 Table 2. Action Components

Action Components Range Description

Source Unit [0, h × w - 1] the location of the unit selected to perform an action

Action Type [0, 5] NOOP, move, harvest, return, produce, attack

Move Parameter [0, 3] north, east, south, west

Harvest Parameter [0, 3] north, east, south, west

Return Parameter [0, 3] north, east, south, west

Produce Direction [0, 3] north, east, south, west

Parameter Produce Type [0, 6] resource, base, barrack, worker, light, heavy ranged

Relative Attack Position [0, 𝑎𝑟
2 - 1] the relative location of the Position unit that will be attacked

Lance Bae - CRPASE: Transactions of Industrial Engineering 8 (3) Article ID: 2487, 1–5, September 2022

4

Figure 3. Test Accuracy per Cell

4.1. Sample DTC

Figure 4 displays the DTC used for the cell in row 2,

column 2, which had 1,846 data points collected (the most

of any cell) and a test accuracy of 93.5%.

Looking at this tree, it's very easy to follow the model's

decision process: if the condition at the top of each box is

true, the train of logic falls to the left, and if it's false, the

train goes to the right. Once the train of logic reaches a leaf

node, a prediction is made. This sample DTC's visual

simplicity and straightforwardness are precisely why we

propose the use of DTCs in our future pursuits of modelling

µRTS agents' decision-making processes.

Figure 4. Decision Tree Classifier for Cell (2, 2)

Lance Bae - CRPASE: Transactions of Industrial Engineering 8 (3) Article ID: 2487, 1–5, September 2022

5

5. Conclusion and Future Work

If it is not already apparent, this research project is still

young, and there is a lot of work to be done. However, these

preliminary results are enough to get us excited and assured

that we are on the right track. As of right now, our

(chronological) future plans consist of:

▪ Collecting more data from COAC. As previously stated,

there appears to be a clear correlation between each cell's

number of data points and its DTC's test accuracy. Thus,

it is only natural for us to aim to collect more data points.

However, there are more data points in certain regions

for a reason: the game starts with COAC's agents in the

top-left corner, and it appears that COAC tends to move

its units along the diagonal of the board. Therefore, we

will work towards manually placing COAC in

uncommon situations by manipulating the game state:

this will allow us to collect more data points from less

popular cells.

▪ Hard-coding rules into our DTCs. Right now, our DTCs

do not appear to be taking a cell's unit into account.

However, it would make sense for a DTC, for example,

to automatically eliminate some action choices for a

“Barrack” unit since they can only stay idle or produce.

We aim to hard-code these decisions into the DTCs so

that they are able to immediately make “obvious”

choices.

▪ Creating a GUI. Once our DTCs are all able to perform

at a sufficient level, we will aim to create an interactive

GUI for outsiders to easily understand how the COAC

agent behaves, thus ultimately achieving our goal of

creating a human-understandable model that is able to

present how the COAC agent behaves.

Acknowledgments

I thank Yanming Zhang (Stony Brook University) and

Dr. Klaus Mueller (Stony Brook University) for mentoring

me and allowing me to partake in this research project.

References

[1] DeepMind, Alphago. (2022).

https://www.deepmind.com/research/highlighted-

research/alphago.

[2] vwxyzjn. gym-microrts-paper, (2022).

https://github.com/vwxyzjn/gym-microrts-paper. GitHub.

[3] microRTS AI Competition. 2020 cog results, (2020). https://

sites.google.com/site/micrortsaicompetition/microrts.

[4] E. Puiutta, E. M. S. P. Veith, Explainable reinforcement

learning: A survey. In A. Holzinger, P. Kieseberg, A. M.

Tjoa, E. Weippl (Eds.), Machine learning and knowledge

extraction. Springer International Publishing, (2020).

[5] A. Verma, V. Murali, R. Singh, P. Kohli, S. Chaudhuri,

Programmatically interpretable reinforcement learning,

(2018). DOI: 10.48550/ARXIV.1804.02477

[6] T. Shu, C. Xiong, R. Socher, Hierarchical and interpretable

skill acquisition in multi-task reinforcement learning, (2017).

DOI: 10.48550/ARXIV.1712.07294

[7] G. Liu, O. Schulte, W. Zhu, Q. Li, Toward interpretable deep

reinforcement learning with linear model utrees, (2018).

DOI: 10.48550/ARXIV.1807.05887

[8] Madumal, P., Miller, T., Sonenberg, L., & Vetere, F. (2019).

Explainable reinforcement learning through a causal lens.

DOI: 10.48550/ARXIV.1905.10958

[9] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B.

Thirion, O. Grisel, E. Duchesnay, Scikit-learn: Machine

learning in Python. Journal of Machine Learning Research,

12 (2011) 2825–2830.

https://www.deepmind.com/research/highlighted-research/alphago
https://www.deepmind.com/research/highlighted-research/alphago

