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 In many applications of statistical process control, the quality of a product or a 

process is described by the relationship between the response variable and one or 

more independent variables which is called a profile. A profile could be either 

linear or nonlinear. The control limits of a chart, used to monitor a profile, are 

functions of model parameters. The classical estimators used to estimate the 

parameters, are defined under certain hypotheses such as the normality of the error 

terms. Deviation from any of these assumptions may cause contamination. 

Whenever contamination exists, the classical estimators are not robust, and the 

resulting control charts are not accurate when monitoring the profiles. In this 

research, a robust estimator of the model error term variance is introduced and 

evaluated using MSE. Then the robust estimators of the slope and the intercept 

along with the robust estimator of the error term variance are used to define the 

control limits for the process profile under consideration. Simulation results 

indicate that the out of control ARL of the proposed control charts is smaller than 

the ARL of the classical control charts in the presence of contamination.  

1. Introduction 

In many applications of statistical process control (SPC), the 

quality of a product or a process regarding a random variable 

or a vector of random variables is well described by a 

univariate or multivariate distribution, respectively. 

However, in some cases the quality of a product or a process 

is well described by the relationship between a response 

variable and one or more independent variables. This 

relationship is usually called a profile which could be either 

linear or nonlinear.   

A process modeled by a profile is being monitored in 

two phases. In phase І, the process comes under control and 

the parameters of the profile are estimated while in phase ІІ 

the running process is monitored to keep it in control which 
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is done by constructing control charts. The parameters of a 

simple linear profile including the intercept, the slope and the 

error term variance are usually estimated by the least square 

method of estimation. This classical method is defined under 

certain hypotheses, such as normality assumption. Deviation 

from any of such assumptions at any time is called 

contamination. When contamination exists, the classical 

estimators are not robust and the resulting control charts will 

not accurately control the profile in phase II. Thus, other 

estimation methods are required for estimating the profile 

parameters which perform well, not only when the process is 

in control but also when any contamination exists. 

Kang and Albin introduced the concept of monitoring 

linear profiles for the first time [1]. Several authors have 

studied robust control charts. Most of them tried to provide 
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methods for estimating process dispersion [2]. A robust 

estimator was presented for process standard deviation. 

Based on this estimator, a robust R control chart was 

proposed [3]. A robust estimator was introduced for 

estimating process dispersion in which interquartile range 

(IQR) used as a measure of dispersion within the subgroups 

[4]. Based on [4]’s method, another dispersion control charts 

was proposed by [5]. A robust estimator was used to estimate 

the process dispersion. In this method, median absolute 

deviation of observations about sample mean is used as a 

measure of dispersion within the subgroups [6]. A profile 

monitoring method was suggested when the error terms are 

correlated [7]. The median of subgroup ranges was used as 

an estimator of dispersion [8]. Two novel robust control 

charts for monitoring multiple linear profiles were proposed 

in [9]. Based on the robust estimators used by [9], a robust 

process capability indices was suggested for multiple linear 

profiles [10].  New optimizing methods for minimizing the 

objective function were presented in [11], [12], [13] which 

could be used in minimizing the loss function. Using novel 

machine learning methods in healthcare and AI, there exists 

a good opportunity to apply the profile monitoring [14], [15]. 

In this work, a robust estimator of the profile error term 

variance is introduced and evaluated using mean square error 

(MSE). Based on [16]; the M-estimators of the slope and the 

intercept of the model are robust and have better 

performance than the classical ones. The suggested robust 

estimator of the variance is used along with the M-estimators 

of the slope and the intercept to construct robust control 

chart. 

The classical method of parameter estimation and the 

robust M-estimator method are presented in this introductory 

section. Methodology of the study is discussed in section 2. 

The robust estimation of dispersion for simple linear profiles 

and its evaluation is presented in section 3. Determination of 

the control limits for this robust control chart is provided in 

section 4. A simulation study for evaluating the suggested 

method of constructing robust control chart and its 

application in monitoring a simple linear profile is provided 

in section 5. The findings are discussed and conclusions are 

made in section 6. 

2. Methodology 

2.1. Classical Method 

According to [1], slope, intercept and standard deviation 

of a simple linear profile are estimated based on m subgroups 

of size n observations. Then, the profile parameters are 

estimated using the least square estimation (LSE) method for 

each subgroup. When the data are collected, the process may 

not be in control and outliers exist. So, the data used to 

estimate the model parameters in phase I must be first 

checked out which is done by constructing a T2 control chart. 

Let the simple linear profile be represented as Eq. (1) 

 
𝑌 = 𝛽0 + 𝛽1𝑥 + 𝜀;         𝜀~𝑁(0, 𝜎2) (1) 

where 𝛽0 and 𝛽1 are the intercept and slope, respectively and 

𝜎2 is the error term variance. They are the model parameters. 

Then, T2 is defined as: 

 

𝑇𝑗
2 =

𝑛

𝑛−1
(𝒃𝑗 − 𝒃̅)

′
𝑺−1(𝒃𝑗 − 𝒃̅);     𝑗 = 1,2, … , 𝑚  (2) 

where 𝐛j = (𝑏0𝑗 , 𝑏1𝑗)′, 𝐛̅ = (𝑏̅0, 𝑏̅1)′, 𝐒 = (
𝑆0

2 𝑆01

𝑆10 𝑆1
2 ) and 

𝐛j is the vector of estimated profile parameters for jth 

subgroup, 𝐛̅ and 𝐒 are the sample mean vector and the sample 

variance-covariance matrix of 𝐛j s over m subgroups, 

respectively.  

[1] defined the upper control limit for T2 control chart 

as: 

 

𝑈𝐶𝐿 = 2𝐹(2,𝑛(𝑛−2),𝛼)  (3) 

where 𝐹(𝜈1,𝜈2,𝛼)is the 𝛼-upper percentile of the F distribution 

with 𝜈1 and 𝜈2  degrees of freedom. Therefore, in this method 

𝑇𝑗
2 is computed for all m subgroups. As long as a 𝑇𝑗

2 is 

smaller than UCL, given in equation (3) the profile is 

considered in control and 𝑏0𝑗 , 𝑏1𝑗 is a valid model parameter 

estimates. While, when a 𝑇𝑗
2 is larger than UCL, the profile 

is considered to be out of control, and its related 𝑏0𝑗 , 𝑏1𝑗 are 

not valid and discarded. This is done for all m subgroups. 

Finally, a simple average over all valid model parameter 

estimates, 𝐛̅ = (𝑏̅0, 𝑏̅1)′, is computed as the estimators of the 

intercept and the slope of the model, respectively. 

2.2. M-estimate Method 

The general linear profile is defined as: 

 
𝑌 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑘𝑥𝑘

+ 𝜀;         𝜀~𝑁(0, 𝜎2) 
(4) 

Eq.(4) could be written as: 

 
𝒚 = 𝒙′𝜷 + 𝜀  (5) 

where, 𝐱 = (1, 𝑥1, … , 𝑥𝑘)′and 𝛃 = (𝛽0, 𝛽1, … , 𝛽𝑘)′ are the 

vector of independent variables and model parameters, 

respectively and ε is the error term. The LSE method used to 

estimate the general linear profile model parameters in Eq. 

(5) is based on minimizing the quantity. 

 
𝑄 = ∑ (𝑌𝑖 − 𝐱i

′𝛃)2 = ∑ 𝑟𝑖
2𝑛

𝑖=1
𝑛
𝑖=1   (6) 

where r is the residual. 

There is another method for estimating the parameters 

of general linear profile called least absolute deviation 

(LAD) or L1. In this method ∑ |𝑟𝑖|n
i=1  is minimized. [16] 

showed that this method is robust against data contamination 

and presented an algorithm for estimating the model 

parameters. They introduced another estimator called M-

estimator which uses L1 as the initial value and is more 

robust to data contamination. The robust estimator of β is the 

solution of the equation: 

 

∑ 𝜓0
𝑛
𝑖=1 (

𝑟𝑖(𝜷̂)

𝜎
) 𝒙𝑖 = 𝟎  (7) 
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in which: 

𝜓0 = 𝜌0
′ = −

𝑓0
′

𝑓0
 and 𝜎̂ =

1

0.675
𝑀𝑒𝑑𝑖𝑎𝑛𝑖{|𝑟𝑖| ; 𝑟𝑖 ≠ 0}.  

where 𝑓0 is the probability density function of the error terms 

and 𝑓0
′ is its derivative. [16] recommended the iterative 

reweighed algorithm for solving Eq. (7) as the followings: 

(1) Compute an initial L1 estimate for 𝛃̂0 and then compute ̂  

(2) For k = 0, 1, 2, … : 

• Given 𝛃̂k, for i = 1, 2, …, n. compute 𝑟𝑖,𝑘 = 𝑌𝑖 −

𝐱i
′𝛃̂k and 𝑤𝑖,𝑘 = 𝑊(

𝑟𝑖,𝑘

𝜎̂
) 

• Compute 𝛃̂k+1 by solving ∑ 𝑤𝑖,𝑘𝐱𝑖(𝑌𝑖 − 𝐱𝑖
′𝛃̂) =𝑛

𝑖=1

𝟎 

(3) Stop when 𝑚𝑎𝑥𝑖(
|𝑟𝑖,𝑘−𝑟𝑖,𝑘+1|

𝜎̂
) < 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 

 

Note that in this algorithm W(.) is a weight function 

which corresponds to 𝜓 function. Using this 𝜓 function, a 

special weight is assigned to each observation. Usually W(x)  

is a non-increasing function of |𝑥| and thus the atypical 

observations receive less weight. There are different 𝜌, 𝜓 and 

𝑊 functions. 

According to [16] some of these functions are provided 

in Table 1. Huber functions and Bisquare functions perform 

well for k = 1.37 and k = 4.68, respectively.  

In this research, a robust control chart for monitoring 

simple linear profile is proposed. So, the robust estimators of 

parameters of the profile 𝑌 = 𝛽0 + 𝛽1𝑥 + 𝜀, where 𝜀s are 

mixed normal, must be introduced. Robust estimators of the 

parameters 𝛽0 and  𝛽1are obtained by the algorithm presented 

in the previous section. Robust estimator of the error term 

variance is suggested in the next section. 

3. Robust Estimation of Error Term Variance in Simple 

Linear Profile 

The estimate of error term variance is used to perform 

statistical analysis, design control charts and compute 

process capability indices. According to [16] the classical 

methods overestimate the error term variance when 

contamination exists. So, it is necessary to propose a robust 

method for estimating the error term variance. The robust 

error term variance estimator in linear profile model is not 

proposed in [16]. It is stated in Section 1 that the W(.) 

function allocates a weight to each observation to reduce the 

effects of outliers. Therefore, it is logical to estimate the error 

term variance by considering the weights. Let 𝜎2 = 𝜃, then 

θ may be estimated from Eq. (8).

 

Table 1. The Family of Huber and Bisquare Functions 

 

𝜃̂ =
∑ 𝑤𝑖 𝑟𝑖

2𝑛
𝑖=1

𝑛−2
  (8) 

where 𝑤𝑖 = 𝑊(
𝑟𝑖

√𝜃̂
) is provided in Table 1. 

This estimator of the error term variance is not 

necessarily unbiased. To obtain an unbiased estimator of 𝜎2, 

the estimator must be divided by 𝐼𝑛 which depends on the 

sample size n. The 𝐼𝑛 is estimated by 
𝜃̅̂

𝜎2 where 𝜃̅̂ =
∑ 𝜃̂𝑖

𝑚
𝑖=1

𝑚
 

and m is the number of subgroups. Then 𝐼𝑛𝜎2 = 𝐸(𝜃̂) and 

𝜎̂2 =
𝜃̅̂

𝐼𝑛
 . 

 

4. Computation of Robust Control Limits 

Once the error term variance is estimated the control 

limits for the simple linear profile may be calculated. 

According to [17] control limits for the simple linear 

regression model are: 

(𝑈𝐶𝐿, 𝐿𝐶𝐿)

= 𝑌̂ ± 𝑡
((𝑚𝑛−2),

𝛼

2
)
√𝜎̂2 (

1

𝑚
+

1

𝑛
+

(𝑥 − 𝑥̅)2

𝑆𝑥𝑥

) 

= 𝛽̂0 + 𝛽̂1𝑥

± 𝑡
((𝑚𝑛−2),

𝛼

2
)
√𝜎̂2(

1

𝑚
+

1

𝑛
+

(𝑥 − 𝑥̅)2

𝑆𝑥𝑥

) 

(9) 

where 𝛽̂0 and 𝛽̂1 are robust estimates of the model 

parameters, 𝜎̂2 is robust estimate of the error term variance 

where these robust estimates are introduced in previous 

section, 𝑡((𝑚𝑛−2),
𝛼

2
) is the upper 

𝛼

2
 -percentile of t distribution 

with (𝑚𝑛 − 2) degrees of freedom, n is the number of levels 

of the independent variable, 𝑆𝑥𝑥 = ∑ (𝑥𝑖 − 𝑥̅)2𝑛
𝑖=1  and m is 

the number of observations at each level of the independent 

Bisquare Huber Functions 

{
1 − (1 − (

𝑥

𝑘
)2)3              𝑖𝑓 |𝑥| ≤ 𝑘

1                                          𝑖𝑓 |𝑥| > 𝑘
 {

𝑥2                       𝑖𝑓 |𝑥| ≤ 𝑘

2𝑘|𝑥| − 𝑘2       𝑖𝑓 |𝑥| > 𝑘
 𝜌𝑘(𝑥) 

{
𝑥(1 − (

𝑥

𝑘
)2)2                     𝑖𝑓 |𝑥| ≤ 𝑘

0                                           𝑖𝑓 |𝑥| > 𝑘

 

{
𝑥                       𝑖𝑓 |𝑥| ≤ 𝑘

𝑠𝑔𝑛(𝑥)𝑘        𝑖𝑓 |𝑥| > 𝑘

 

𝜓𝑘(𝑥)
 

{
(1 − (

𝑥

𝑘
)2)2                       𝑖𝑓 |𝑥| ≤ 𝑘

0                                           𝑖𝑓 |𝑥| > 𝑘

 

min {1,
𝑘

|𝑥|
}

 

𝑊𝑘(𝑥)
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variable. These limits are functions of x. The statistic being 

plotted on this chart is the sample mean of m new 

observations at any level of independent variable x denoted 

by 𝑌̅. 

4.1. Example 

An example presented in [1] is provided here to investigate 

and compare the results of the classical and the robust 

estimators. They suggested the use of a simple linear profile 

model of the form 𝑌 = 3 + 2𝑥 + 𝜀 where ε is normally 

independently distributed with mean zero and variance 𝜎2. 

Simulation studies are conducted in three stages to 

compare the classical and the robust estimators under the two 

scenarios absence and presence of contamination. In first 

simulation runs, ε is independent 𝑁(0,1) variable when no 

contamination exists. While, in second simulation runs, 90% 

of εs are distributed 𝑁(0,1)and 10% of ε s are either 

distributed 𝑁(1,5)or 𝑁(3,7)to simulate two different 

contamination scenarios. 

For each level of the independent variable 𝑥 =
2, 4, 6, and 8 random samples of size 𝑛 = 20 responses are 

generated. Therefore, the number of observations in each run 

is 80. The simulation run is repeated 20,000 times using 

MATLAB software on personal computer model HP 

COMPAC 6520. 

Huber and Bisquare functions are used as weight 

functions to compute the M-estimates of model parameters 

𝛽0, 𝛽1 and 𝜎. The correction coefficients for variance 

estimator for Bisquare function with 𝑘 = 4.68 and for Huber 

function with 𝑘 = 1.37 are calculated as 𝐼𝑛 = 1.7108 and 

𝐼𝑛 = 1.4279, respectively. 

The estimates of the model parameters including slope 

(𝛽0), intercept (𝛽1) and error term variance (𝜎2) are 

computed by applying the classical method in absence and 

presence of contamination. Robust estimates of these three 

parameters are computed using the proposed method 

suggested in Section 2. 

Table 2 shows the simulation results from different 

estimation methods in the absence of contamination and 

when there is a 10% contamination in each case. 

 

 
 

Table 2. Results of Classical and Robust Estimates of the Parameters for Profile 𝑌 = 3 + 2𝑥 + 𝜀 
Estimation Method  

Estimators 

0% contamination 10% 

contamination 
with N(1,3) 

10% contamination 

with N(1,5) 

10% contamination 

with N(3,5) 

10% contamination 

with N(3,7) 

 

M-estimate method 
with Bisquare 

function 

𝑏0 3.0052 3.003 3.0102 2.9968 2.9968 

𝑏1 2.0004 2.0003 1.9998 2.0001 2.0002 

𝜎̃2 0.584501 1.148537 1.103535 1.116742 1.076633 

𝑀𝑆𝐸(𝜎̃2) 0.543 0.080852 0.0644 0.068992 0.0553 

 
M-estimate method 

with Huber function 

𝑏0 3.06 2.9969 2.9968 2.9968 2.9968 

𝑏1 2.0003 2.0002 2.0002 2.0002 2.0002 

𝜎̃2 0.700306 1.22636 1.252954 1.297465 1.285407 

𝑀𝑆𝐸(𝜎̃2) 0.2199 0.113248 0.1323 0.165995 0.158 

 

Classical Control 

Chart 

𝑏0 3.3001 3.1054 3.099 3.001 2.9967 

𝑏1 1.9998 2.0004 2.0005 2.0004 2.0003 

𝜎̂2 0.998014 1.8652276 3.396795 4.112972 6.416103 

𝑀𝑆𝐸(𝜎̂2) 0.019975 1.437778 7.481249 8.210812 37.43541 

Figure 1 compares the results of the three estimation 

methods for estimating the error term variance. 

 

Figure 1. Comparison of Estimated Variances by Classical and 

Robust Methods 

 

 
Figure 2. Comparison of MSE of Error Term Variance Estimators 

for Estimation Methods 

 
For comparing the efficiency of the estimators, the value 

of 𝑀𝑆𝐸(𝜎̂2) are computed for the three methods and are 

0
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displayed in Figure 2. Investigation of Table 2 and Figures 1 

and 2 show that the classical method introduces estimators 

with better performance in absence of contamination. While, 

in presence of contamination, the two robust estimators have 

better performances than the classical estimator. By applying 

the proposed method of estimating the error term variance, 

the value of 𝑀𝑆𝐸(𝜎̂2) remains within an acceptable limits, 

and the estimated error term variance is close to its actual 

value. However, the estimated variance using the classical 

method is far from the actual value of the error term variance. 

Therefore, the efficiency of the robust estimators is 

much better than the classical estimators. It can also be noted 

that the two robust estimators have almost the same 

performance in presence and absence of contamination. 

 
5. Construction of Robust Control Chart for Phase II 

Monitoring 

In this section robust control chart, based on robust 

estimates of the model parameters, are constructed and their 

performances are compared with the classical control chart. 

Control limits for profile 𝑌 = 3 + 2𝑥 + 𝜀 is obtained by 

substituting robust and classical estimates of the parameters 

obtained in phase I in Eq. (9). Table 3 provides upper and 

lower control limits for the simple linear profile under 

consideration obtained from the three methods. 

 

Table 3. Control Limits for Profile 𝑌 = 3 + 2𝑥 + 𝜀 

Estimation Method Lower Control Limit Central Line Upper Control Limit 
Robust Method with 

Huber Function 3.06 − 3.1 (√1.13376 (0.35 +
(𝑥 − 5)2

20
))

+ 2.0003𝑥 

 

3.06 + 2.0003𝑥 

3.06

+ 3.1 (√1.13376 (0.35 +
(𝑥 − 5)2

20
))

+ 2.0003𝑥 

Robust Method with 

Bisquare Function 3.0052 − 3.1 (√1.03761 (0.35 +
(𝑥 − 5)2

20
))

+ 2.0004𝑥 

 

3.0052 + 2.0004𝑥 
3.0052

+ 3.1 (√1.03761 (0.35 +
(𝑥 − 5)2

20
))

+ 2.0004𝑥 

Classical Control 

Chart 3.3001 − 3.355 (√3.85 (0.35 +
(𝑥 − 5)2

20
))

+ 1.9998𝑥 

 

3.3001 + 1.9998𝑥 
3.3001

+ 3.355 (√3.85 (0.35 +
(𝑥 − 5)2

20
))

+ 1.9998𝑥 

Table 3 shows that the central lines for the three methods 

are approximately similar. While LCL and UCL are different 

due to different methods of estimating the error term 

variance. It is notable that LCL and UCL for the two robust 

methods are very similar. The three control charts are 

illustrated in Figures 3, 4 and 5. Also, the comparison of the 

three control charts are shown together in Figure 6. 

Figure 3. Classical Control Limits for Profile 𝑌 = 3 + 2𝑥 + 𝜀 

 
Figure 4. Robust Control Limits with Huber Function for Profile 

𝑌 = 3 + 2𝑥 + 𝜀 

 
Figure 5. Robust Control Limits with Bisquare Function for 

Profile 𝑌 = 3 + 2𝑥 + 𝜀 
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Figure 6. Comparison of  Robust and Classical Control Limits for 

Profile 𝑌 = 3 + 2𝑥 + 𝜀 

 

All control limits are hyperbola shaped. It is obvious that 

the robust control charts are more sensitive than the classical 

one since its limits are wider than the robust control limits. 

A simulation study is performed to compare the 

performances of the suggested robust control charts with the 

classical one by means of Average Run Length (ARL). In 

this study, the three control charts are constructed such that 

the in control ARL is 25. For each level of the independent 

variable, random samples of size 10 are generated from the 

model 𝑌 = (3 + 𝑘1𝜎) + (2 + 𝑘2𝜎)𝑥 + 𝑁(0, (𝑘3𝜎)2), in 

which k1, k2 and k3 are the sizes of the shift in units of the 

error term standard deviation. Needless to say that only one 

parameter is shifted at a time. The value of 𝑌̅ is computed for 

each run and is plotted on the chart. MATLAB software is 

used to generate data over 20,000 runs. Simulation results for 

different shifts in the intercept, slope and error term standard 

deviation for 𝑥 = 4 are shown in Table 4 and are illustrated 

on Figure 7. The results for the other values of the 

independent variable may be obtained from the 

corresponding author. 

Table 4. Comparison of ARLs for Control Charts 

𝛽0 shifted to 𝛽0 + 𝑘1𝜎 𝛽1 shifted to 𝛽1 + 𝑘2𝜎 𝜎 shifted to 𝜎 + 𝑘3𝜎 

k1 Huber Bisquare Classical 

Method 

k2 Huber Bisquare Classical 

Method 

k3 Huber Bisquare Classical 

Method 

0 25 25 25 0 25 25 25 0 25 25 25 

0.3 20.99 18.134 20.982 0.5 14.631 11.096 20.998 0.2 15.09 19.989 20.853 

0.4 20.97 16.669 20.973 0.8 5.273 3.114 20.981 0.4 8.94 13.839 19.859 
0.5 20.63 14.843 20.936 0.85 3.791 2.368 20.753 0.6 6.469 11.368 18.708 

0.7 12.261 10.126 20.582 0.9 1.404 1.113 20.298 0.8 5.108 10.007 17.516 

0.8 5.259 7.983 20.178 0.95 1.075 1.012 18.591 1 4.337 9.236 16.57 
0.9 1.796 5.814 19.43 1 1.007 1.002 15.272 1.2 3.738 8.637 15.627 

1 1.063 4.17 18.292 1.05 1 1 10.442 1.8 2.843 7.742 13.799 

1.1 1.003 2.948 16.877 1.1 1 1 5.805 2 2.68 7.579 13.375 

2 1 2.077 15.037 1.15 1 1 2.796 3 2.116 7.015 11.432 

 

 

7- (a) 

 

7- (b) 

 

7- (c) 

Figure 7. Comparison of ARLs for Control Charts for x=4: (a) 𝛽0 

is shifted (b) 𝛽1 is shifted (c) 𝜎 is shifted 

 

Investigation of Figure 7- (a) indicates that the robust 

control charts detect the shifts in parameters more quickly 

than the classical control chart. This result suggests that the 

robust estimator of a profile parameters is more reliable for 

monitoring profile in both presence and absence of 

contamination. It is also obvious that M-estimate method 
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with Huber function has better performance than the M-

estimate with Bisquare function when estimating the model 

parameters and constructing control charts. 

6. Conclusions 

In this research, an unbiased robust estimator of the error 

term variance in a simple linear profile is proposed, and the 

robust M-estimate method with Huber and Bisquare 

functions are applied to estimate the model parameters of a 

simple linear profile. These estimates are then compared 

with the classical estimates of the parameters in an extensive 

simulation study. The simulation results show that the robust 

estimates are not affected by contaminations and suggest 

better estimates than the classical ones. The MSE criterion 

indicates that the robust error term variance estimator is more 

accurate than the classical estimator when contaminations 

exist. The control limits constructed based on the robust 

estimates of the simple linear profile parameters detect any 

out of control situation more rapidly than the control chart 

established based on the classical estimates which are 

investigated by means of ARLs. The robust control charts 

have less ARL for the shifts in the intercept, the slope, and 

the error term variance. It is notable that M-estimate of the 

simple linear profile parameters with Huber function has 

better performances than the Bisquare function. 

Simultaneous shifts in model parameters two and three at a 

time are areas for further investigations. Thus, we 

recommend the use of the suggested robust estimates of a 

simple linear profile parameter when constructing control 

chart. The use of other robust estimators such as S, MCD and 

MVE for estimating the profile parameters are areas for 

further research. 
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