
 

COMPUTATIONAL RESEARCH PROGRESS IN APPLIED SCIENCE & ENGINEERING (CRPASE) 

 

CRPASE: TRANSACTIONS OF MECHANICAL ENGINEERING 

Journal homepage: http://www.crpase.com 

CRPASE: Transactions of Mechanical Engineering 8 (1) Article ID: 2745, 1–6, March 2022 ISSN 2423-4591 

 

   

Research Article 

 

The Smoothed Pseudo Wigner Ville Distribution for the Ship Shafting Torsional 

Vibration Signals Analysis 

 Zou Lülong, Zhang Dapeng  

College of Ocean Engineering, Guangdong Ocean University, Zhanjiang, Guangdong, China,524088 

Keywords  Abstract 

Improved Smoothed 

Pseudo Wigner Ville 

Distribution (ISPWVD), 

Ship Shafting, 

Torsional Vibration 

Signal. 

 

 

The paper shows the ship shafting torsional vibration signal analysis using the Improved 

Smoothed Pseudo Wigner Ville Distribution (ISPWVD). The torsional vibration frequency 

components are complex and signals are variable frequency signals (or more precisely: 

linear frequency modulated signals, i.e. the whole shafting is constant acceleration or 

deceleration). The processing method of the torsional vibration signals is introduced in the 

study. In this paper, it is confirmed that the signal processing method of the torsional 

vibration is feasible through the actual experiment and has practical significance for the ship 

shafting torsional vibration analysis. 

 

1. Introduction 

Vibratory forces generated in ship propulsion systems by 

main engine, shaft, propeller and gearbox as well as by wave, 

current and imbalanced ship loads are often unavoidable. 

These forces have influence on axial, radial and torsional 

vibrations. When the oscillation motion is twisting the rotor, 

the torsional vibration will be generated. Unchecked 

torsional vibration can cause cracking, crankshaft failure, 

failure of the parts or excessive wear and tear of bearings and 

gear parts. The paper shows the ship shafting torsional 

vibration signal analysis performance by using ISPWVD. 

The central idea is to obtain a signal’s energy concentration 

distribution in time-frequency domain without aliasing or 

cross components, and so that closely spaced components 

can be easily distinguished. 

2. The Improved Smoothed Pseudo Wigner Ville 

distribution (ISPWVD) 

The Wigner distribution (WD) is perhaps the most 

prominent quadratic time-frequency (TF) representation. It 
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was originally defined in a quantum mechanical context by 

Wigner in 1932. Ville introduced the WD in a signal analysis 

context in 1948[1]. The Wigner Ville distribution（WVD）
is ideal for the linear frequency modulated (FM) signal, and 

exhibits many beneficial properties, including energy 

conservation, time and frequency shift invariants, or 

compatibility with filters; the details are described by Cohen 

[2]. 

The WVD of a real signal s(t) is expressed as Eq (1) 
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where x(t) is the analytic signal associated with the real 

signal s(t)[3]. The analytic signal x(t) of a signal s(t) is 

defined as x(t)=s(t)+iH[s(t)], where H[s(t)] is the Hilbert 

Transform of the signal s(t); the Hilbert Transform is 

sometimes referred to as a "quadrature filter" and the 

transformed signal as the "quadrature signal". 
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In order to compute WVD, the signal must be sampled. 

For the limited bandwidth signals (i.e. if 0||   ,

0)( =x ), and the signal sampling interval is T ,WVD 

was given by Eq. (2). 
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The WVD has cross-term interference, which appears 

as frequencies that lie between the any two adjacent strong 

frequencies components. In general, the Pseudo Wigner 

Ville distribution (PWVD) and the Smoothed Pseudo 

Wigner Ville distribution (SPWVD) are often used for 

suppressing cross-term interference (Eq. (3)). 
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According to its Cohen's kernel function, the PWVD is 

concentered on the frequency axis. In the PWVD the time 

windowing acts as a frequency smoothing. Therefore, the 

PWVD suppresses the Wigner distribution interference 

components that oscillate in the frequency direction. 

The discrete form of Eq. (3) is Eq. (4) 
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where f 2= , )(k is a window function that the signal 

near the time being analyzed will have higher weight. The 

length of )(k is 12 −L . 

In the time direction, time smoothing can be 

implemented by a time-convolution of the Pseudo Wigner 

distribution (Eq. (5)). 
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where the operations q is a lowpass function. 

The discrete form of Eq. (5) is Eq. (6): 
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where the length of )(k is 12 2 −L , and )( jq  is 12 1 −L . 

The literature [3] shows that a correct use of the Wigner 

Distribution (WD) for time-frequency signal analysis 

requires use of the analytic signal. The method does not 

exhibit any aliasing problem, and introduces no frequency 

artifacts. The problems introduced by the use of the Wigner 

Distribution with a real signal are clarified. The Wigner 

distribution function is also equivalent to the rotation 

operation of the Gabor transform [4]. Compared with the 

WVD, the Gabor transform does not have the cross-term 

problem. This advantage is important for developing a new 

method for interference reduction. Soo-Chang Pei [5] uses 

the Gabor transform instead of the WVD to perform signal 

processing, and they combines the advantages of the Gabor 

transform (no cross term) and the WVD (high clarity) to find 

out the Gabor-Wigner transform. In a word, the optimal 

kernel distributions design is important, and they are based 

on the distribution norms, i.e. sums of the distribution values. 
When the cross terms appeared, the norms failed to behave 

in the desired way. A fast algorithm has been developed for 

solving the linear program, allowing the computation of the 

signal-dependent Time-frequency distributions with a time 

complexity on the same order as a fixed-kernel distribution 

[6]. A signal-dependent kernels that changes shape for each 

signal to offer improved time-frequency representation for a 

large class of signals by R.G. Baraniuk, D.L. Jones [7]. The 

literature [8] indicates that SPWVD provides a good 

resolution at high frequency and a good frequency resolution 

at low frequencies in dependently if signals remain 

stationary. The literature [9] provides a coherent framework 

for intuitive strategies aimed at detecting chirp like signals 

by some line integration in the time–frequency plane. It is 

common to convert a real signal into a analytic signal prior 

to the Wigner Ville transform by applying the Hilbert 

transform. It must be emphasized that various examples of 

application of such an approach have already been proposed 

in the literature, e.g., in [ 10, 11,12] or, more recently in [13, 

14,15,16]. A new method for interference reduction in the 

Smoothed Pseudo Wigner-Ville distribution is described by 

Stanislav Pikula, Petr Beneš [15]. They believe that if 

nonlinear FM signals are included in the analyzed signal, 

these constitute an indivisible portion of the result, and the 

different time and frequency window widths in the SPWVD 

affect the resulting presence of the interferences and Time-

Frequency (TF) resolution, then they focus on the growing 

window impact at different points in the TF plane. For a 

single TF point, the algorithm finds the minimal difference 

between two consecutive SPWVDs. Two SPWVDs with 

such minimal difference then constitute the ideal smoothing 

for a concrete TF point. The actual estimated value is 

calculated as the mean of the two values provided by the two 

SPWVDs for the concrete TF point. The described method 

is repeated for all TF points within the whole TF plane [15]. 

The disadvantage of the algorithm is the need of multiple 

calculations of the SPWVD. The literature [16] considers 

that the motor is operating in continuous non-stationary 

operating conditions, and the windowed Fourier ridges was 

used for the detection of rotor faults. The torsional vibration 

signal was analyzed in this paper using the new method 

that’s put forward by Stanislav Pikula & Petr Beneš [15]. The 

other characteristics and data processing method of the 

torsional vibration signals also discussed in the paper. 

3. Testing signals  

To illustrate the application of the Improved Smoothed 

Pseudo Wigner-Ville distribution, several examples are 

shown below. 

Example 1. The first testing signal chosen is with 

constant amplitude (A=0.5md), and with a constant 

frequency (f=15Hz), the signal s(t) is given as.  

)
180

30
30sin(5.0)(


 −= tts

 
(7)

 

Considering data sampling frequency is at 80Hz, a signal 

of containing a 15Hz sinusoid with amplitude 0.5um and 

disturbing it with some zero-mean random noise was formed. 

Figure 1 is FFT spectrum of signal s(t), the above picture in 

Figure 1 is single-sided amplitude spectrum of signal s(t), a 

constant frequency component (f=15Hz) was represented, 
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and the following picture in Figure 1 is a phase frequency 

spectrum of signal s(t), it reveals that when the frequency is 

equal to 15Hz, the corresponding phase angle suddenly 

changes. 

 

 
Figure 1. FFT spectrum of s(t) 

 

Figure 2 shows that interference terms (or cross terms) 

present in a real signal can be avoided by computing the 

analytic signal. This illustrates that the analytic signal should 

be used for a better time-frequency analysis in using 

SPWVD. 

 

 
Figure 2. ISPWVD spectrum of x(t) 

 

Using the analytic signal, the advantages are:  

(1) The positive and negative frequency interference 

components near the zero frequency were eliminated. 

(2) Because the analytical signal spectrum is a unilateral 

spectrum, so frequency folding phenomenon is not going to 

happen in Wigner Ville distribution. 

(3) The sampling frequency can be selected according 

to the Nyquist frequency in Wigner Ville distribution, and 

interference terms were disappear. When the analytic signal 

is used as the input signal, the sampling rate criterion for the 

time signal is restored to the normal Nyquist sampling 

criterion, i.e., the signal must be sampled at a frequency at 

least twice as high as the highest frequency content in the 

signal [11]. 

If sampling frequency(fs) was chosen appropriately, the 

calculation result of real value input signal is correct by using 

ISPWVD, but the ISPWVD function was expecting the 

analytic signal, the usage of real value input signal may be 

incorrect. What’s the meaning of appropriate fs ?   

Because the cycle of frequency variable in WVD is  ,the 

cycle of frequency variable discrete Fourier transform is 

2 , i.e. if the real signal is as input signal, sampling 

frequency (fs) should be 2 times the Nyquist frequency in 

WVD. In this case, interference terms present in a real signal 

input also can be avoided. It is important to note that the 

sampling rate should be at least four times of frequency of 

interest if aliasing is avoided [11]. 

Here, the paper shows that a correct use of the Wigner 

Ville distribution for a signal analysis. There was no 

difference between FFT and SPWVD, the method 

demonstrates that FFT and SPWVD can be used 

interchangeably in stationary signals [8]. 

Example 2. The second testing signal chosen, is with 

linear frequency modulation signal constant frequency 

signals, constant amplitude (A=1md), and with seven 

constant frequencies (fi=5Hz…35Hz), see Figure 3, the 

signal s(t) is given as 
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where fmlin is a frequency modulation function, n is 

number of points, 0 is initial normalized frequency, 0.5 is 

final normalized frequency, time reference for the phase is 

2/n . 

Figure 3 shows the FFT spectrum of the signal s(t), which 

has a linear frequency modulation component and seven 

constant frequency components. The above picture in Figure 

3 is that one linear frequency modulation with seven constant 

frequency spectrums were represented, and the following 

picture in Figure 3 is a phase spectrum. The phase difference 

between exciting and response is very low at the low 

frequency stage in this diagram, the exciting and response 

are basically synchronous, without too much delay. But it is 

different at the high frequency stage, the system is not to be 

able to reflect the difference due to inertia effect , therefore, 

it reveals that when the frequency respectively were equal to 

20Hz,25Hz,30Hz,35Hz, the corresponding phase angle 

suddenly changes. 

 

 
 

Figure 3. FFT spectrum of linear frequency modulation signal 

s(t) 
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Figure 4 is a profile of ISPWVD spectrum, it not only shows 

seven constant frequency components, but also shows one 

linear frequency modulation component. 

However, when applied WVD to a signal with multi 

frequency components, interference terms appear because 

quadratic nature of WVD. But using the new method that’s 

put forward by Stanislav Pikula & Petr Beneš [3], 

interference terms can be eliminated, and the signal 

components were correctly characterized. 

 

 
Figure 4. ISPWVD spectrum of linear frequency modulation 

 

Figure 4 is a profile of ISPWVD spectrum, it not only shows 

seven constant frequency components, but also shows one 

linear frequency modulation component. 

However, when applied WVD to a signal with multi 

frequency components, interference terms appear because 

quadratic nature of WVD. But using the new method that’s 

put forward by Stanislav Pikula & Petr Beneš [3], interferenc 

terms can be eliminated, and the signal components were 

correctly characterized. 

4. Experiment 

Experimental facilities: 

The motor of an experimental four-pole (p=2) three phase 

induction machine is equivalent to that the rotor is mounted 

centrally between two bearings 90mm apart, the shaft 

diameter is 20mm, and a coupler is jointed with it, a disk with 

60 teeth (i.e. rotor) is mounted between another two bearings 

510mm apart. The disk position is at the location that is the 

1/3 length of a shaft, which is 612 mm length and its diameter 

is 30 mm.  

This is a three-disk (rotor, joint, disk) four-bearing rotor 

system. 

Equipment model: Motor model: Y2-90s-4,Motor 

Power:1.1kw,Rated speed:1440r/m;precision aluminum 

alloy coupler, HTA Rotary encoder,Type:Z58/12K/6L-

200P/R. Bearing:1505. 

The qualitative analysis of torsional vibration signal: 

The autocorrelation function and partial autocorrelation 

function of actual acquisition signal have been calculated. 

Under normal circumstances, the convergence speed of 

autocorrelation function reflects that how many frequency 

components a signal have. The signal autocorrelation 

function of random component always tends to zero, or a 

certain value along with time. See Figure 6, the random 

signal is a normally distributed pseudorandom numbers, its 

autocorrelation function value tends to a certain value along 

with time.  

  

 
Figure 6. Random signal autocorrelation and partial 

autocorrelation function 
 

Whereas the signal autocorrelation function of the 

periodic components is always keeping the original periodic 

property and not attenuating. See Figure 7, the periodic 

function is 
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The function curve is not decay 

 

 
Figure 7. Three periodic signal autocorrelation and partial 

autocorrelation function 
 

Based on the definition of autocorrelation function and 

partial autocorrelation function, the autocorrelation function 

and partial autocorrelation function properties of amplitude 

modulation signal and frequency modulation signal have 

been studied. For amplitude modulation signal, 

autocorrelation function can be fully characterized. See 

Figure 8, it is a superposition of two one-sided exponential 

amplitude modulation. It is represented obviously in sample 

autocorrelation function, but cannot be represented 

obviously in sampling partial autocorrelation function. 

Whereas the frequency modulation signal, the part 

autocorrelation function can be fully characterized. See 

Figure 9, it is a superposition of two linear frequency 

modulation signal. It is represented obviously in sample 

partial autocorrelation function, but cannot be represented 

obviously in sampling autocorrelation function. 
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Figure 8. signal autocorrelation and partial autocorrelation 

function of amplitude modulation 

 
Figure 9. signal autocorrelation and partial autocorrelation 

function of linear frequency modulation 

Figure 10 shows the curve of autocorrelation function and 

partial autocorrelation function of actual acquisition 

torsional vibration signal, which may be a periodic signal 

with frequency modulation. 

 
Figure 10. autocorrelation function and partial autocorrelation 

function of the actual acquisition torsional vibration signal when 

the motor speed is down 

The torsional vibration signal which is the vibration signals 

of rotor speeding down is verified below (see Figure 11 and 

Figure 12). 

 
Figure 11. FFT spectrum of the actual acquisition torsional 

vibration signal 

 

 
Figure 12. ISPWVD spectrum of the actual acquisition 

torsional vibration signal 
 

Analysis steps: 

Step (1) First, the data becomes smooth, with the 

purpose of eliminating the irregular trend. 

Step (2) Then, the signal is multiplied by a windowed 

function in order to reduce the spectrum leakage. 

Step (3) Then, the data was processed by using the 

Hilbert transform. Based on the Hilbert transform, the 

analytic signal is formed. 

Step (4) Then, ISPWVD spectrum analysis of the data 

was done by using the Improvement Smoothed Pseudo.  

 

5. Conclusions 

At present, the concrete implementation of the waterfall 

figure need not only the sensor which is used to measure 

acceleration, velocity and displacement, but also tachometer 

which is used to measure the rotor rotation speed, which is 

for providing reference shaft speed information. This makes 

that the waterfall figure analysis required measurement 

process is more cumbersome, especially in the occasion that 

the tachometer is inconvenient to install. 

The ISPWVD spectrum that can be seen from the above 

may be equivalent to the order spectrum synthesis. 

Implementation method of a waterfall figure of the vibration 

analysis may be completed by using above method. Its 

advantage is to reduce the hardware requirements for 

realizing the waterfall chart. 
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