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In the strategic management of manufacturing operations, the integration of quality control 

systems is pivotal for sustaining competitive advantage and operational excellence. Control 

Chart Patterns (CCPs) are instrumental in this regard, offering a data-driven approach to 

detect and manage process variability and quality. Recognizing the crucial role of CCPs, 

this manuscript unveils a cutting-edge machine learning methodology specifically 

engineered for the strategic oversight of manufacturing quality, with a focus on the accurate 

identification of various CCPs. By harnessing a blend of smart geometric and statistical 

feature extraction and a refined neural network model, our proposed method unfolds through 

a trio of classification stages. Each stage employs radial basis function neural networks 

(RBFNNs), meticulously calibrated using backpropagation algorithms, to pinpoint a subset 

of CCPs. The fine-tuning of these networks is achieved via particle swarm optimization, 

determining the optimal number of radial basis functions and their expansion widths. The 

core contributions of this research include innovative feature extraction methods, bolstered 

robustness of RBFNNs, and a comprehensive scope encompassing nine CCPs. This 

meticulously crafted approach culminates in a resilient and finely tuned analytical engine, 

adept at navigating the complexities of CCPs. Through simulation, we validate that our 

approach surpasses existing methods, boasting an exemplary pattern recognition accuracy 

of 99.5%. This paper represents a significant leap in quality control management, equipping 

organizations with a robust tool to enhance their manufacturing process integrity. 

 

1. Introduction 

In the domain of strategic manufacturing quality 

management, the deployment of control charts (CCs) is 

integral to the systematic oversight and continuous 

monitoring of production processes[1]. Esteemed for their 

precision and reliability, CCs have been extensively 

integrated within diverse industrial sectors. Leading 

enterprises, including Ford, General Motors, and Chrysler, 

have set a precedent in the application of CCs, harnessing 
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their capabilities for enhancing quality assurance and 

refining process management [1, 2]. 

The quintessential role of a control chart is to act as a 

barometer for the statistical control state of a production 

process, offering a visual synthesis of process variation and 

performance over time. It is a pivotal instrument providing 

visibility into the stability and consistency of process 

outputs, thus facilitating a preemptive approach to quality 

management. The utility and popularity of control charts 
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stem from their ability to reinforce productivity, preempt 

defects and deficiencies, minimize unwarranted process 

adjustments, and deliver critical insights into system 

capabilities. This instrumental function empowers 

organizations to proactively manage and refine their 

manufacturing processes, ensuring quality remains at the 

forefront of their operations [3]. 

A control chart is typically composed of a central line 

(CL), indicative of the process average, with accompanying 

upper (UCL) and lower control limits (LCL) [1]. These 

limits delineate the scope of normal process variation, and 

adherence to this range is indicative of a process in statistical 

control. Conversely, deviations from this established 

normality signal the emergence of special-cause variations, 

necessitating prompt investigative and remedial actions [4]. 

As illustrated in Fig. 1, a control chart not only tracks 

adherence to normal process behavior but is also adept at 

identifying a spectrum of abnormal patterns, each 

symptomatic of specific operational disturbances, as 

enumerated in Fig. 2. Beyond the normal operation condition 

depicted by the NOR pattern, eight distinct abnormal Control 

Chart Patterns (CCPs) can emerge [1, 4]: 

Stratification (STR): This pattern is indicative of data 

amalgamated from multiple processes rather than a single 

source, suggesting a segmented or stratified process flow. 

Systematic (SYS): Characterized by consistent, point-to-

point variations, a systematic pattern could imply routine 

differences in test sets or alternation in production lines, 

leading to regular fluctuations in output. 

Mixture (MIX): The mixture pattern often arises from 

overcontrol within the process or the confluence of outputs 

from disparate sources into a singular stream, indicating a 

blend of varying process inputs. 

Cyclic (CYC): This pattern, a sequence of repeating 

fluctuations, may be attributed to periodic environmental 

changes or operational variances, such as the rotation of 

personnel or equipment. 

Trend (IT/DT): An increasing or decreasing trend signifies a 

consistent directional change in the process output, 

potentially caused by factors such as operator fatigue, tool 

wear, or machine degradation. 

Shift (US/DS): An abrupt upward or downward shift in 

the process average suggests significant changes such as 

modifications in process settings, machinery malfunctions, 

material substitutions, or workforce transitions. 

 

 
Figure 1. Control chart illustrating typical quality monitoring 

signals with central line, upper and lower control limits, and a 

highlighted CCP signal indicating an out-of-control process event. 

Recognizing CCPs accurately is a critical step in quality 

management within manufacturing processes, as these 

patterns are associated with specific and identifiable factors 

that can significantly impact production [5]. Traditionally, 

the detection and interpretation of CCPs have relied heavily 

on manual inspection, supported by a set of heuristic rules 

such as zone tests and run rules to aid quality control 

engineers in identifying abnormalities. However, the 

reliance on manual rules often leads to a high rate of false 

alarms and misinterpretations, complicating the process and 

potentially leading to misguided decisions [6-8]. 

With the advent of advanced computational technology, 

machine learning algorithms have taken a front seat in the 

automated recognition of CCPs, demonstrating substantial 

success. Various algorithms like Support Vector Machines 

(SVM), Random Forest, Multilayer Perceptron Neural 

Networks (MLPNNs), and fuzzy systems have shown 

promising results in deciphering complex CCPs with higher 

accuracy and efficiency. The integration of these 

sophisticated algorithms has revolutionized the field of 

process control, offering scalable and adaptive solutions 

capable of navigating the intricate patterns and nuances 

inherent in CCPs. These advancements not only enhance the 

precision of classification tasks but also streamline the 

analytical processes, thereby reinforcing the strategic role of 

machine learning in industrial quality control and continuous 

process improvement [9-12]. 

Initial approaches involved feeding raw, unprocessed 

data into MLPNNs to recognize CCPs. The MLP neural 

networks consist of one or more hidden layers with arbitrary 

number of neurons in those hidden layer. The main learning 

algorithm is these networks is backpropagation and its 

modified version like Levenberg–Marquardt.  These 

networks can learn complicated classification problem and 

are robust to noise in the data. While these early models 

achieved respectable accuracy, they were limited to a subset 

of CCP types and suffered from issues distinguishing highly 

similar patterns such as trends and shifts. Subsequent 

research sought to overcome these limitations by introducing 

more sophisticated techniques like Learning Vector 

Quantization (LVQ) networks, probabilistic neural network 

(PNN), and Wavelet Neural Networks (WNNs), which 

improved accuracy through advanced training algorithms 

and activation functions. Researchers also experimented 

with Spiking Neural Networks (SNNs) for classifying a 

broader range of CCPs, achieving commendable accuracy 

levels [7, 13-16]. 

A common challenge faced in CCP recognition is the 

complexity and size of the classifiers when raw data is used. 

This complexity is particularly problematic when dealing 

with large datasets commonly found in industrial 

applications. To address this, there has been a shift towards 

utilizing feature extraction methods that reduce the 

dimensionality of the data, thereby simplifying the classifiers 

without compromising their effectiveness. The literature 

reveals that the type of input data—whether raw or processed 

through feature extraction—and the classifier's architecture 

significantly influence the accuracy of CCP recognition. It is 

evident that incorporating features such as shape, statistical, 

frequency, and fuzzy attributes into the input data enhances 

the classifier's performance. 
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Figure 2. Composite control chart displaying nine distinct patterns. These patterns, due to their similarity, pose significant challenges for 

manual detection and separation, underscoring the need for sophisticated analytical methods. 

 
Despite the progress made with various classifiers, 

including MLPNNs and SVMs, these methods still exhibit 

notable drawbacks that can undermine their reliability. 

Hence, this paper proposes a novel approach that employs an 

optimized Radial Basis Function Neural Network (RBFNN) 

paired with a minimal set of carefully selected features to 

recognize a complete set of nine CCPs. This comprehensive 

model addresses the challenge of differentiating between 

highly similar patterns, thus enabling a more detailed and 

accurate monitoring of the production process. 

The paper is structured as follows: the second part 

discusses the classifiers and feature extraction methods; the 

third part details the proposed methodology; the fourth part 

presents the simulation results; and the final section 

concludes with the implications of our findings for the field 

of strategic manufacturing quality management. 

2. Fundamental Techniques and Analytical Frameworks 

2.1. Machine Learning Model 

The RBFNN is a paradigm of neural networks that stands 

out for its specialized architecture tailored for pattern 

recognition and function approximation tasks. At the heart of 

an RBFNN lies the radial basis function, a real-valued 

function whose output decreases (or increases) 

monotonically with distance from a central point, known as 

the center. This structure allows RBFNNs to respond to 

inputs based on their distance to the center, making them 

highly sensitive to the proximity of input data to learned 

examples. The network typically consists of three layers: an 

input layer, a hidden layer with a non-linear RBF activation 

function, and a linear output layer. The hidden layer 

transforms the input space into a higher dimension where a 

linear separation of the classes becomes feasible. One of the 

primary advantages of RBFNNs is their ability to converge 

to the solution rapidly, which makes them suitable for real-

time problem-solving scenarios where speed is of the 

essence [17]. 

RBFNNs are particularly adept at handling issues where 

the relationship between the input and the output is unknown 

or complex, enabling the network to act as a universal 

approximator for non-linear functions. This capability is 

leveraged in various fields, from financial forecasting and 

medical diagnosis to system control and data classification. 

The training of RBFNNs involves determining the optimal 

parameters for the radial basis functions, which include the 

center locations, the width or spread of the functions, and the 

weights that connect the hidden layer to the output layer. The 

network's success hinges on its ability to generalize from the 

training data and make accurate predictions on unseen data, 

a feature that is critically dependent on the proper 

configuration of these parameters. 

2.2. Particle Swarm Optimization (PSO) Algorithm 

Recently, several nature-inspired algorithms have been 

introduced and used successfully in solving complex 

optimization problems [18-33], among which the Particle 

Swarm Optimization (PSO) algorithm is particularly 

noteworthy [34]. This computational method, rooted in the 

emulation of social behaviors found in flocks of birds or 

schools of fish, stands out in the realm of evolutionary 

computation. PSO is predicated on the concept of individual 

particles representing potential solutions that collectively 

navigate the search space. Each particle adjusts its trajectory 

not only based on its own experience but also in 

consideration of the group's best-known positions, 

facilitating a dynamic and shared search for the optimum 

solution. 
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The PSO process initiates with a random distribution of 

particles, each moving through the problem space guided by 

a velocity that is iteratively adjusted. The algorithm 

iteratively updates the velocity and position of each particle 

by balancing the particle's best-known position with the 

global bests found by the swarm, effectively harmonizing 

individual and collective insights. This balance between 

exploration and exploitation allows PSO to efficiently 

navigate the search space, minimizing the risk of becoming 

ensnared in local optima—a common obstacle in many 

optimization strategies. 

In the field of neural network training, particularly for 

optimizing the parameters of RBFNNs, PSO has 

demonstrated exceptional utility. The algorithm's capability 

to efficiently locate optimal or near-optimal solutions is 

leveraged to determine the most effective centers, spreads, 

and weights within the RBFNN, ensuring that the network's 

predictive performance is maximized. The convergence 

properties of PSO, coupled with its relatively straightforward 

implementation, make it a favorable choice for enhancing 

machine learning models, especially in complex, high-

dimensional problem spaces where traditional optimization 

methods may falter. 

3. CCP Classification Method 

In our research, we introduce a sophisticated 

classification approach for the detection and identification of 

nine distinct Control Chart Patterns, leveraging the synergy 

of geometric and statistical features. This ensemble of 

features was meticulously chosen for their proven 

effectiveness in pattern recognition within complex datasets. 

A prominent feature in our method is the slope of the least-

squares line fitted to the data points (Feature 1), as outlined 

by Pham and Wani, providing a quantitative assessment of 

trends within the CCP. Accompanying this, we incorporate 

the standard deviation of the pattern data points (Feature 2), 

offering insight into the variability present within the pattern. 

Additional features include the frequency of mean line and 

least-squares line crossings (Features 3 and 4), which are 

indicative of potential cyclical behavior or process shifts. We 

also assess the divergence of segment slopes from the overall 

least-squares line (Feature 5), which can highlight shifts in 

trend direction or intensity. To capture the cumulative 

deviation from the trend, we calculate the area between the 

pattern and its corresponding least-squares line (Feature 6). 

Lastly, we monitor for abrupt amplitude changes over short 

intervals (Feature 7), crucial for detecting sudden process 

disturbances. 

Employing the RBFNN as the classifier, recognized for 

its proficiency in pattern recognition, we enhance its 

performance further through optimization with the PSO 

algorithm. This culminates in the PSO-RBFNN hybrid 

model, which comprises five distinct PSO-RBFNN units, 

each dedicated to recognizing specific CCPs using a selected 

array of features. This multi-tiered approach optimizes the 

classification task, substantially improving both the 

precision and efficiency of the pattern recognition process. 

At the first level of separation, we utilize signal slopes 

(Feature 1) to categorize nine patterns into three primary 

groups, as delineated in Figure 3. This categorization is 

based on the distinctive slope characteristics of the CCP 

signals. For instance, an output vector [0 1 0] from the first 

PSO-RBFNN signifies the signal’s affiliation with the 

second category, potentially classifying it as IT or US. 

Progressing to the second level of separation, the Feature 

2 serves to distinguish among the five CCPs in the first 

group: NOR, CYC, MIX, STR, and SYS. Here, the second 

PSO-RBFNN unit aims to output a classification of NOR, 

STR, or a combined group of [CYC, MIX, SYS]. An output 

[1 0 0] or [0 0 1] indicates a pattern categorization of NOR 

or one of the combined group CCPs, respectively. 

The third level employs Features 3 and 4 to further 

discriminate between the CCPs CYC, MIX, and SYS. An 

output [0 1 0] at this stage is interpreted as the MIX pattern. 

In the fourth and fifth levels of separation, we apply Features 

5 through 7 to resolve the IT and US patterns, as well as the 

DT and DS patterns, respectively, with corresponding 

outputs signifying the identified pattern. 

The proficiency of a RBFNN in classifying CCPs is 

profoundly influenced by the judicious selection of its hyper-

parameters, notably the spread (also known as the radius or 

width) of the radial basis functions and the number of RBFs 

constituting the hidden layer. These parameters are decisive 

in determining the sensitivity and adaptability of the RBFNN 

to the intricacies of the input space. The spread defines the 

area of influence each radial basis function has on the input 

space, thereby controlling the smoothness of the function 

approximation. If the spread is too small, the network may 

become over-sensitive to the training data, leading to 

overfitting. Conversely, a spread that is too large may not 

capture the subtleties of the data, resulting in underfitting. 

Similarly, the number of RBFs is directly related to the 

model's complexity. Too few RBFs might not allow the 

network to capture the complexity of the data, while too 

many can lead to redundancy and excessive computational 

demand. 

In the context of RBFNN training, PSO iteratively 

adjusts the positions (potential solutions) of a swarm of 

particles (candidate sets of hyper-parameters) by following 

the current optimum particle, mimicking the collaborative 

behavior observed in nature. Each particle's position in the 

swarm represents a potential solution to the optimization 

problem — in this case, a specific configuration of RBFNN 

hyper-parameters. The particles explore the search space, 

guided by their individual experiences (local bests) and the 

collective experience of the swarm (global best), to converge 

on the optimal spread and number of RBFs. 

By leveraging PSO, the task of hyper-parameter 

optimization transcends traditional grid search and manual 

tuning methods, which are often labor-intensive and may not 

guarantee the discovery of the global optimum. PSO's ability 

to balance exploration and exploitation ensures a 

comprehensive search of the solution space, making it an 

ideal tool for this optimization task. The two parameters c1 

and c2 control the exploration and exploitation of PSO. The 

c1 parameter, also known as the personal learning coefficient, 

influences how much each particle's own best-known 

position (the best solution it has found so far) guides its 

movements. A higher value of c1 encourages particles to 

follow their own path towards the solution they believe to be 

best. The social learning coefficient, c2, dictates the extent 

to which particles are drawn towards the best solution found 

by any particle in the swarm. 
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Figure 3. First level of separation in the proposed method using shape feature. 

 
The algorithm evaluates the performance of each 

particle's position by using a fitness function, typically the 

classification accuracy or error rate of the RBFNN on a 

validation set. Through the iterative process of velocity and 

position updates, PSO refines the swarm's search, homing in 

on the most effective spread and number of RBFs that yield 

the highest classification accuracy for the CCPs. This 

dynamic optimization process imbues the RBFNN with an 

enhanced capability to generalize from the training data and 

reliably classify new, unseen data with a high degree of 

accuracy. 

In this paper, we demonstrate how the application of PSO 

facilitates the fine-tuning of the RBFNN's architecture, 

yielding a substantial uplift in the CCP classification 

performance. The empirical results presented later 

substantiate the efficacy of PSO in optimizing the RBFNN 

parameters, ensuring that the network operates at its highest 

potential and providing a robust, accurate tool for quality 

control in manufacturing environments. 

4. Results  

The simulation studies to validate the performance of our 

PSO-RBFNN model were meticulously executed within the 

Python programming environment, utilizing its powerful 

libraries. TensorFlow, a library renowned for its flexible 

neural network capabilities, and SciPy, known for its 

comprehensive signal processing functions, were integral in 

the implementation and testing of our model. These tools 

provided the computational efficiency and advanced 

functionalities required for the precise classification of 

CCPs. 

For the generation of our training and testing datasets, we 

employed established formulae from the literature [35], 

producing 500 instances for each CCP. We rigorously 

applied the 10-fold cross-validation method to ensure a 

robust evaluation of the system's performance. This 

technique involved partitioning the dataset into ten equal 

folds, carefully maintaining a proportional representation of 

each CCP class. During the validation process, nine folds 

were utilized for training the model, while the remaining fold 

was reserved for testing. This cycle was repeated ten times, 

with each fold being used once as the test set, to calculate the 

recognition accuracy (RA) rate. The RA was determined by 

averaging the accuracy rates obtained from each test iteration 

and further averaging the results over 50 independent runs to 

ensure statistical robustness. 

To closely monitor the training dynamics and mitigate 

overfitting, a validation set comprising 20% of the training 

data was used at the end of each epoch. Fig. 4 in the paper 

delineates the data distribution across each training fold, 

providing transparency into the training process. The careful 

orchestration of these methodologies has culminated in a 

comprehensive assessment of the model's capabilities. 

 

 
Figure 4. Data Allocation Framework for CCP Signal Processing: 

The diagram depicts the division of all CCP signals into distinct 

sets for model training (90%) and testing (10%). Within the 

training subset, further segmentation is carried out to create a 

dedicated validation set (20%) to fine-tune and validate the model, 

ensuring robustness against overfitting. 

4.1. Performance of PSO-RBFNN  

In this detailed subsection, we delve into the comparative 

analysis between the standard RBFNN and its advanced 

version, the PSO-RBFNN. The traditional RBFNN 

configuration adheres to a direct approach, aligning the 

quantity of radial basis functions with the number of training 

data points. This conventional strategy is simple but not 

necessarily efficacious in achieving the best possible model 

performance. Our analysis, as outlined in Table 1, contrasts 

the "RBFNN," which denotes the standard model, against the 

"PSO-RBFNN," which indicates the enhanced model. 

For this evaluation, various inputs were tested to 

underscore the significance of feature extraction. We 

employed both raw data and processed data, incorporating 

geometric and statistical features from the literature, to feed 

into the machine learning models. The PSO-RBFNN 

commenced with 40 particles, undergoing 100 generational 

iterations to refine the network's hyper-parameters 

meticulously. The PSO's acceleration coefficients, c1 and c2, 

set at 0.8 and 0.6 respectively, modulate the particles' 

movement, influencing both their individual learning and 

swarm intelligence. 
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The PSO's optimization process successfully pinpointed 

an optimal structure of 46 RBFs with a spread of 1.65. Table 

1 demonstrates the outcomes, where the PSO-RBFNN, using 

geometric features referenced in [24], achieved a recognition 

accuracy of 98.2% for the nine CCPs. This is a notable 

improvement compared to the 96.23% accuracy of the 

standard RBFNN. Furthermore, when utilizing raw data, the 

PSO-RBFNN managed to achieve 95.1% accuracy, 

validating the importance of feature extraction in enhancing 

model performance. 

Table 1's comprehensive evaluation reveals the PSO's 

substantial contribution to optimizing the RBFNN's design, 

where strategic hyper-parameter tuning can significantly 

elevate classification accuracies. The sophistication 

embedded within the PSO-RBFNN's architecture sets it 

apart, establishing a novel standard for CCP classification 

efficacy within the realm of quality control. 

 
Table 1. Evaluation of RBFNN performance with different inputs 

Classifier Input Acc (%) 

RBFNN Raw signal 93.4 

PSO -RBFNN Raw signal 95.1 

RBFNN Geometric features [35] 96.2 

PSO -RBFNN Geometric features [35] 98.2 

RBFNN Geometric features [15] 96.3 

PSO -RBFNN Geometric features [15] 97.6 

RBFNN Statistical features [13] 96.2 

PSO -RBFNN Statistical features [13] 97.6 

 

The results encapsulated within this table articulate the 

clear advantage of using PSO in fine-tuning the RBFNN, 

especially when using refined geometric and statistical 

features as inputs. These enhanced accuracies are indicative 

of the PSO-RBFNN's ability to provide a robust, analytical 

tool that can be employed in real-world applications, where 

the precision of pattern classification is of utmost 

importance. In addition to having high recognition accuracy 

of 98.2%, the optimized RBFNN shows robust performance 

at different runs with standard deviation of ±0.04.  

 

 

4.2. Performance of the Proposed Method 

The efficacy of our proposed method is accentuated by 

the detailed experimental results, particularly emphasizing 

the profound influence of hyperparameter optimization in the 

RBFNN on the model's accuracy. Furthermore, the 

integration of various geometric and statistical features has 

been shown to yield differing degrees of accuracy. Our 

method, which strategically employs a set of seven 

geometric and statistical features across five distinct 

classification stages, showcases a refined approach to CCP 

classification. 

The performance of the proposed method is illustrated in 

Fig 5, which presents the confusion matrix resulting from our 

classification process. This matrix is a testament to the 

precision of the approach, revealing that our method 

achieves a remarkable 99.5% accuracy in classifying CCPs. 

The confusion matrix offers a granular view of the model's 

performance across all nine CCP types, detailing the true 

positives, false positives, true negatives, and false negatives 

for each pattern. 

The high accuracy rate is indicative of the model's ability 

to effectively utilize the selected features, efficiently 

differentiating between the various CCPs. This precision is 

particularly notable given the inherent challenges associated 

with classifying patterns that are often subtle and complex. 

The utilization of these features in a phased approach, with 

each stage specifically tailored to certain patterns, enables 

the model to navigate through the intricacies of the 

classification task with a high degree of success. 

The results encapsulated within the confusion matrix not 

only validate the effectiveness of the proposed method but 

also highlight the advantage of applying a multi-phase 

classification strategy. By doing so, we can ensure that each 

pattern is evaluated with the utmost precision, leading to a 

robust and reliable CCP classification system. The proposed 

method stands as a significant contribution to the field, 

offering a sophisticated tool that can be readily applied in 

industrial quality control to maintain high production 

standards. 

 
Figure 5. Confusion matrix for proposed CCP classification method, PSO-RBFNN, with 99.5% recognition accuracy
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5. Conclusion 

The CCPs serve as pivotal indicators in strategic 

management, offering essential data for the meticulous 

oversight of quality control and the optimization of 

manufacturing processes. The ability to accurately discern 

and interpret these patterns is critical, as it empowers 

managers to uphold stringent quality standards and facilitates 

informed decision-making that underpins the integrity and 

sustainability of manufacturing operations. 

This research has substantiated the efficacy of machine 

learning as a formidable tool for the classification of CCPs. 

We have demonstrated that while the use of raw data for 

machine learning models offers a baseline for pattern 

recognition, it typically yields lower accuracy levels. 

However, by incorporating feature extraction techniques, we 

can significantly enhance the model's accuracy, harnessing 

the nuanced information within the data. Further 

improvements in classification accuracy were achieved 

through the optimization of the RBFNN's hyperparameters. 

Our proposed methodology, which intelligently employs 

both geometric and statistical features, marks a substantial 

advancement in this domain. By applying this approach, we 

have attained an exemplary recognition accuracy of 99.5%. 

The implications of achieving such high recognition 

accuracy extend far beyond the technical realm; they 

resonate profoundly within the spheres of management and 

operational decision-making. High accuracy ensures that 

quality control managers are equipped with reliable and 

precise information, minimizing risks and fostering a culture 

of excellence in manufacturing practices. The outcomes of 

this study provide a compelling case for the integration of 

advanced machine learning techniques in the strategic 

management toolkit, reinforcing the value of intelligent data 

analysis in driving quality and efficiency in manufacturing 

operations. 
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